Skip to content

Drug Discovery with Quantum Entangled Knowledge Graphs

This comprehensive use case demonstrates how QE-KGR revolutionizes pharmaceutical research by modeling molecular interactions, drug-target relationships, and biological pathways as quantum entangled systems.

🧬 Overview

Drug discovery traditionally relies on classical computational methods that struggle to capture the complex, non-linear relationships between molecules, targets, and biological systems. QE-KGR introduces quantum mechanics principles to model:

  • Quantum Superposition: Drugs and targets existing in multiple states simultaneously
  • Entanglement: Non-classical correlations between molecular entities
  • Interference: Constructive/destructive effects in drug combinations
  • Quantum Walks: Enhanced exploration of molecular interaction networks

🎯 Key Applications

1. Drug Repurposing Discovery

2. Novel Target Identification

3. Drug-Drug Interaction Prediction

4. Molecular Network Analysis

5. Biomarker Discovery


πŸ§ͺ Complete Drug Discovery Example

Let's build a comprehensive quantum knowledge graph for drug discovery:

import numpy as np
import qekgr
from qekgr import EntangledGraph, QuantumInference, EntangledQueryEngine
from qekgr.utils import QuantumGraphVisualizer

def create_comprehensive_drug_graph():
    """Create a comprehensive quantum drug discovery knowledge graph."""

    # Use higher dimensional Hilbert space for complex molecular states
    graph = EntangledGraph(hilbert_dim=8)

    # === ADD DRUG MOLECULES ===
    drugs = [
        # Anti-inflammatory drugs
        ("Aspirin", "anti_inflammatory", {
            "target": ["COX1", "COX2"], 
            "indication": ["pain", "inflammation", "fever"],
            "mechanism": "COX_inhibition",
            "bioavailability": 0.8,
            "half_life": 4.0
        }),
        ("Ibuprofen", "anti_inflammatory", {
            "target": ["COX1", "COX2"],
            "indication": ["pain", "inflammation"],
            "mechanism": "COX_inhibition", 
            "bioavailability": 0.9,
            "half_life": 2.5
        }),
        ("Celecoxib", "anti_inflammatory", {
            "target": ["COX2"],
            "indication": ["arthritis", "pain"],
            "mechanism": "selective_COX2_inhibition",
            "bioavailability": 0.75,
            "half_life": 11.0
        }),

        # Diabetes medications
        ("Metformin", "antidiabetic", {
            "target": ["AMPK", "Complex_I"],
            "indication": ["diabetes_T2", "PCOS"],
            "mechanism": "AMPK_activation",
            "bioavailability": 0.55,
            "half_life": 6.5
        }),
        ("Insulin", "antidiabetic", {
            "target": ["Insulin_receptor"],
            "indication": ["diabetes_T1", "diabetes_T2"],
            "mechanism": "glucose_uptake",
            "bioavailability": 1.0,
            "half_life": 1.0
        }),
        ("Glimepiride", "antidiabetic", {
            "target": ["KATP_channels"],
            "indication": ["diabetes_T2"],
            "mechanism": "insulin_secretion",
            "bioavailability": 1.0,
            "half_life": 5.0
        }),

        # Cardiovascular drugs
        ("Atorvastatin", "statin", {
            "target": ["HMG_CoA_reductase"],
            "indication": ["hypercholesterolemia", "CAD_prevention"],
            "mechanism": "cholesterol_synthesis_inhibition",
            "bioavailability": 0.14,
            "half_life": 14.0
        }),
        ("Lisinopril", "ACE_inhibitor", {
            "target": ["ACE"],
            "indication": ["hypertension", "heart_failure"],
            "mechanism": "angiotensin_conversion_inhibition",
            "bioavailability": 0.25,
            "half_life": 12.0
        }),
        ("Warfarin", "anticoagulant", {
            "target": ["VKORC1", "CYP2C9"],
            "indication": ["thrombosis", "atrial_fibrillation"],
            "mechanism": "vitamin_K_cycle_inhibition",
            "bioavailability": 1.0,
            "half_life": 40.0
        }),

        # Experimental/investigational
        ("Compound_X", "experimental", {
            "target": ["Novel_target_1"],
            "indication": ["neurodegeneration"],
            "mechanism": "unknown",
            "bioavailability": 0.6,
            "half_life": 8.0
        })
    ]

    for drug_name, drug_class, metadata in drugs:
        graph.add_quantum_node(drug_name, state=drug_class, metadata=metadata)

    # === ADD PROTEIN TARGETS ===
    targets = [
        ("COX1", "enzyme", {
            "function": "prostaglandin_synthesis",
            "location": ["stomach", "platelets"],
            "pathway": "arachidonic_acid",
            "essentiality": "essential",
            "druggability": 0.8
        }),
        ("COX2", "enzyme", {
            "function": "inflammation_mediation",
            "location": ["inflammatory_sites", "brain"],
            "pathway": "arachidonic_acid",
            "essentiality": "induced",
            "druggability": 0.9
        }),
        ("AMPK", "kinase", {
            "function": "energy_homeostasis",
            "location": ["liver", "muscle", "adipose"],
            "pathway": ["glucose_metabolism", "lipid_metabolism"],
            "essentiality": "critical",
            "druggability": 0.7
        }),
        ("HMG_CoA_reductase", "enzyme", {
            "function": "cholesterol_synthesis",
            "location": ["liver"],
            "pathway": "mevalonate",
            "essentiality": "important",
            "druggability": 0.95
        }),
        ("ACE", "enzyme", {
            "function": "blood_pressure_regulation",
            "location": ["lungs", "kidneys"],
            "pathway": "renin_angiotensin",
            "essentiality": "important",
            "druggability": 0.85
        }),
        ("VKORC1", "enzyme", {
            "function": "vitamin_K_recycling",
            "location": ["liver"],
            "pathway": "coagulation_cascade",
            "essentiality": "critical",
            "druggability": 0.7
        }),
        ("Insulin_receptor", "receptor", {
            "function": "glucose_signaling",
            "location": ["muscle", "liver", "adipose"],
            "pathway": "insulin_signaling",
            "essentiality": "critical",
            "druggability": 0.6
        }),
        ("Novel_target_1", "unknown", {
            "function": "neuroprotection",
            "location": ["brain"],
            "pathway": "unknown",
            "essentiality": "unknown",
            "druggability": 0.5
        })
    ]

    for target_name, target_type, metadata in targets:
        graph.add_quantum_node(target_name, state=target_type, metadata=metadata)

    # === ADD DISEASES/CONDITIONS ===
    conditions = [
        ("Pain", "symptom", {
            "category": "sensory",
            "severity_range": [1, 10],
            "affected_pathways": ["nociception", "inflammation"]
        }),
        ("Inflammation", "process", {
            "category": "immune_response",
            "type": "pathological",
            "biomarkers": ["CRP", "IL6", "TNF_alpha"]
        }),
        ("Type2_Diabetes", "metabolic_disease", {
            "category": "endocrine",
            "prevalence": 0.11,
            "biomarkers": ["HbA1c", "glucose", "insulin"]
        }),
        ("Cardiovascular_Disease", "systemic_disease", {
            "category": "circulatory",
            "prevalence": 0.06,
            "biomarkers": ["LDL", "HDL", "CRP", "troponin"]
        }),
        ("Hypertension", "circulatory_condition", {
            "category": "pressure_disorder",
            "prevalence": 0.45,
            "biomarkers": ["BP_systolic", "BP_diastolic"]
        }),
        ("Thrombosis", "blood_disorder", {
            "category": "coagulation",
            "severity": "severe",
            "biomarkers": ["D_dimer", "PT", "INR"]
        })
    ]

    for condition_name, condition_type, metadata in conditions:
        graph.add_quantum_node(condition_name, state=condition_type, metadata=metadata)

    # === ADD BIOLOGICAL PATHWAYS ===
    pathways = [
        ("Arachidonic_Acid_Pathway", "metabolic_pathway", {
            "key_enzymes": ["COX1", "COX2", "LOX"],
            "products": ["PGE2", "PGI2", "TXA2"],
            "regulation": "inflammatory_stimuli"
        }),
        ("Insulin_Signaling", "signaling_pathway", {
            "key_proteins": ["Insulin_receptor", "IRS1", "PI3K", "AKT"],
            "outcome": "glucose_uptake",
            "diseases": ["diabetes", "metabolic_syndrome"]
        }),
        ("Cholesterol_Synthesis", "biosynthetic_pathway", {
            "key_enzymes": ["HMG_CoA_reductase", "squalene_synthase"],
            "regulation": "feedback_inhibition",
            "diseases": ["hypercholesterolemia"]
        })
    ]

    for pathway_name, pathway_type, metadata in pathways:
        graph.add_quantum_node(pathway_name, state=pathway_type, metadata=metadata)

    # === CREATE QUANTUM ENTANGLED RELATIONSHIPS ===

    # Drug-Target interactions with quantum superposition
    drug_target_interactions = [
        ("Aspirin", "COX1", ["inhibits", "acetylates", "irreversible_binding"], [0.9, 0.8, 0.85]),
        ("Aspirin", "COX2", ["inhibits", "acetylates"], [0.7, 0.6]),
        ("Ibuprofen", "COX1", ["inhibits", "competitive"], [0.7, 0.8]),
        ("Ibuprofen", "COX2", ["inhibits", "selective"], [0.9, 0.85]),
        ("Celecoxib", "COX2", ["inhibits", "highly_selective"], [0.95, 0.9]),
        ("Metformin", "AMPK", ["activates", "allosteric_binding"], [0.9, 0.8]),
        ("Atorvastatin", "HMG_CoA_reductase", ["inhibits", "competitive"], [0.95, 0.9]),
        ("Lisinopril", "ACE", ["inhibits", "active_site_binding"], [0.9, 0.85]),
        ("Warfarin", "VKORC1", ["inhibits", "interferes"], [0.8, 0.7]),
        ("Insulin", "Insulin_receptor", ["activates", "hormone_binding"], [1.0, 0.95]),
        ("Compound_X", "Novel_target_1", ["modulates", "unknown_mechanism"], [0.6, 0.4])
    ]

    for drug, target, relations, amplitudes in drug_target_interactions:
        graph.add_entangled_edge(drug, target, relations, amplitudes)

    # Drug-Condition relationships
    drug_condition_relations = [
        ("Aspirin", "Pain", ["treats", "reduces", "analgesic"], [0.8, 0.7, 0.75]),
        ("Aspirin", "Inflammation", ["reduces", "anti_inflammatory"], [0.7, 0.8]),
        ("Ibuprofen", "Pain", ["treats", "stronger_than_aspirin"], [0.9, 0.8]),
        ("Ibuprofen", "Inflammation", ["reduces", "potent_anti_inflammatory"], [0.85, 0.9]),
        ("Celecoxib", "Inflammation", ["reduces", "selective_action"], [0.9, 0.85]),
        ("Metformin", "Type2_Diabetes", ["treats", "first_line", "glucose_control"], [0.9, 0.95, 0.85]),
        ("Insulin", "Type2_Diabetes", ["treats", "glucose_control"], [0.95, 0.9]),
        ("Atorvastatin", "Cardiovascular_Disease", ["prevents", "lipid_control"], [0.8, 0.85]),
        ("Lisinopril", "Hypertension", ["treats", "ACE_inhibition"], [0.9, 0.85]),
        ("Lisinopril", "Cardiovascular_Disease", ["prevents", "cardioprotective"], [0.75, 0.7]),
        ("Warfarin", "Thrombosis", ["prevents", "anticoagulation"], [0.9, 0.85])
    ]

    for drug, condition, relations, amplitudes in drug_condition_relations:
        graph.add_entangled_edge(drug, condition, relations, amplitudes)

    # Target-Condition relationships
    target_condition_relations = [
        ("COX1", "Pain", ["mediates", "peripheral_sensitization"], [0.7, 0.6]),
        ("COX2", "Inflammation", ["drives", "inflammatory_response"], [0.9, 0.85]),
        ("AMPK", "Type2_Diabetes", ["regulates", "glucose_homeostasis"], [0.8, 0.75]),
        ("HMG_CoA_reductase", "Cardiovascular_Disease", ["contributes", "cholesterol_elevation"], [0.7, 0.8]),
        ("ACE", "Hypertension", ["mediates", "blood_pressure_elevation"], [0.85, 0.8]),
        ("VKORC1", "Thrombosis", ["prevents_when_active", "coagulation_cascade"], [0.7, 0.75]),
        ("Insulin_receptor", "Type2_Diabetes", ["dysfunction_causes", "insulin_resistance"], [0.9, 0.85])
    ]

    for target, condition, relations, amplitudes in target_condition_relations:
        graph.add_entangled_edge(target, condition, relations, amplitudes)

    # Target-Pathway relationships
    target_pathway_relations = [
        ("COX1", "Arachidonic_Acid_Pathway", ["key_enzyme", "prostaglandin_synthesis"], [0.9, 0.85]),
        ("COX2", "Arachidonic_Acid_Pathway", ["key_enzyme", "inflammatory_prostaglandins"], [0.9, 0.9]),
        ("Insulin_receptor", "Insulin_Signaling", ["initiates", "signal_transduction"], [0.95, 0.9]),
        ("HMG_CoA_reductase", "Cholesterol_Synthesis", ["rate_limiting", "mevalonate_formation"], [0.95, 0.9])
    ]

    for target, pathway, relations, amplitudes in target_pathway_relations:
        graph.add_entangled_edge(target, pathway, relations, amplitudes)

    # Drug-Drug interactions (potential combinations/contraindications)
    drug_drug_interactions = [
        ("Aspirin", "Warfarin", ["potentiates", "bleeding_risk"], [0.8, 0.9]),
        ("Ibuprofen", "Lisinopril", ["antagonizes", "reduces_efficacy"], [0.7, 0.6]),
        ("Metformin", "Insulin", ["synergistic", "additive_glucose_control"], [0.8, 0.75]),
        ("Atorvastatin", "Warfarin", ["interacts", "CYP_competition"], [0.6, 0.5])
    ]

    for drug1, drug2, relations, amplitudes in drug_drug_interactions:
        graph.add_entangled_edge(drug1, drug2, relations, amplitudes)

    return graph

def discover_drug_repurposing_opportunities(graph, inference_engine, query_engine):
    """Use quantum reasoning to discover drug repurposing opportunities."""

    print("πŸ”¬ Quantum Drug Repurposing Discovery")
    print("=" * 50)

    repurposing_queries = [
        "What diabetes drugs might help with inflammation?",
        "Could anti-inflammatory drugs treat cardiovascular disease?",
        "What drugs target pathways connected to neurodegeneration?",
        "Find drugs with multi-target potential for combination therapy",
        "Which cardiovascular drugs might have anti-diabetic effects?"
    ]

    discoveries = []

    for query in repurposing_queries:
        print(f"\nπŸ” Query: {query}")
        results = query_engine.query(query, max_results=3)

        for i, result in enumerate(results, 1):
            if result.confidence_score > 0.25:
                print(f"  Result {i} (Confidence: {result.confidence_score:.3f}):")
                print(f"    Entities: {', '.join(result.answer_nodes)}")
                print(f"    Reasoning: {' β†’ '.join(result.reasoning_path)}")

                discoveries.append({
                    'query': query,
                    'entities': result.answer_nodes,
                    'confidence': result.confidence_score,
                    'reasoning': result.reasoning_path
                })

    return discoveries

def predict_novel_drug_targets(graph, inference_engine):
    """Use quantum walks to discover novel drug targets."""

    print("\n🎯 Novel Drug Target Discovery via Quantum Walks")
    print("=" * 55)

    # Start quantum walks from known effective drugs
    effective_drugs = ["Metformin", "Atorvastatin", "Lisinopril"]

    novel_targets = {}

    for drug in effective_drugs:
        print(f"\n🚢 Quantum walk from {drug}:")

        # Perform quantum walk with bias toward protein targets
        walk_result = inference_engine.quantum_walk(
            start_node=drug,
            steps=12,
            bias_relations=["inhibits", "activates", "modulates", "binds"]
        )

        print(f"  Walk path: {' β†’ '.join(walk_result.path[:8])}...")  # Show first 8 steps
        print(f"  Final quantum amplitudes: {np.abs(walk_result.final_state)[:5]}")
        print(f"  Entanglement evolution: {[f'{e:.3f}' for e in walk_result.entanglement_trace[:6]]}")

        # Analyze path for potential new targets
        targets_in_path = []
        for node in walk_result.path:
            if node in graph.nodes:
                node_metadata = graph.nodes[node].metadata
                if node_metadata.get('function') and 'druggability' in node_metadata:
                    druggability = node_metadata['druggability']
                    if druggability > 0.6 and node not in [drug]:  # Exclude starting drug
                        targets_in_path.append((node, druggability))

        # Rank by druggability and quantum amplitude
        if targets_in_path:
            novel_targets[drug] = sorted(targets_in_path, key=lambda x: x[1], reverse=True)[:3]

    return novel_targets

def analyze_drug_drug_interactions(graph, inference_engine):
    """Predict drug-drug interactions using quantum entanglement analysis."""

    print("\n⚠️  Drug-Drug Interaction Analysis")
    print("=" * 40)

    drugs = [node for node in graph.nodes.keys() 
             if 'anti_inflammatory' in str(graph.nodes[node].metadata.get('mechanism', '')) or
                'antidiabetic' in str(graph.nodes[node].state_vector) or
                'statin' in str(graph.nodes[node].state_vector)]

    interactions = []

    for i, drug1 in enumerate(drugs):
        for drug2 in drugs[i+1:]:
            # Find quantum pathways connecting drugs
            drug1_neighbors = set(graph.get_neighbors(drug1))
            drug2_neighbors = set(graph.get_neighbors(drug2))

            # Shared targets indicate potential interaction
            shared_targets = drug1_neighbors & drug2_neighbors

            if shared_targets:
                # Calculate quantum interference between drug states  
                overlap = graph.get_quantum_state_overlap(drug1, drug2)
                interaction_strength = abs(overlap)

                # Get drug metadata for interaction analysis
                drug1_meta = graph.nodes[drug1].metadata
                drug2_meta = graph.nodes[drug2].metadata

                print(f"\n  {drug1} ↔ {drug2}:")
                print(f"    Shared targets: {', '.join(shared_targets)}")
                print(f"    Quantum overlap: {interaction_strength:.3f}")
                print(f"    Drug1 half-life: {drug1_meta.get('half_life', 'unknown')}h")
                print(f"    Drug2 half-life: {drug2_meta.get('half_life', 'unknown')}h")

                # Determine interaction type
                if interaction_strength > 0.7:
                    interaction_type = "⚠️  HIGH risk interaction"
                elif interaction_strength > 0.4:
                    interaction_type = "⚑ Moderate synergy potential"  
                else:
                    interaction_type = "βœ… Low interaction risk"

                print(f"    Assessment: {interaction_type}")

                interactions.append({
                    'drug1': drug1,
                    'drug2': drug2,
                    'shared_targets': list(shared_targets),
                    'interaction_strength': interaction_strength,
                    'assessment': interaction_type
                })

    return interactions

def discover_molecular_networks(graph, inference_engine):
    """Discover entangled molecular interaction networks."""

    print("\nπŸ•ΈοΈ  Molecular Network Discovery")
    print("=" * 35)

    # Define seed combinations for network discovery
    network_seeds = [
        (["COX1", "COX2"], "Inflammation Network"),
        (["AMPK", "Insulin_receptor"], "Metabolic Network"),
        (["ACE", "VKORC1"], "Cardiovascular Network"),
        (["HMG_CoA_reductase", "Arachidonic_Acid_Pathway"], "Lipid-Inflammation Network")
    ]

    discovered_networks = {}

    for seeds, network_name in network_seeds:
        print(f"\nπŸ”¬ Discovering {network_name}...")
        print(f"   Seed nodes: {', '.join(seeds)}")

        # Use quantum subgraph discovery
        network = inference_engine.discover_entangled_subgraph(
            seed_nodes=seeds,
            expansion_steps=4,
            min_entanglement=0.3
        )

        print(f"   Network nodes ({len(network.nodes)}): {', '.join(list(network.nodes)[:10])}")
        if len(network.nodes) > 10:
            print(f"   ... and {len(network.nodes)-10} more")

        print(f"   Network density: {network.entanglement_density:.3f}")
        print(f"   Quantum coherence: {network.coherence_measure:.3f}")
        print(f"   Discovery confidence: {network.discovery_confidence:.3f}")

        # Analyze network for drug development insights
        drugs_in_network = [node for node in network.nodes 
                          if node in graph.nodes and 
                          any(drug_class in str(graph.nodes[node].state_vector) 
                              for drug_class in ['anti_inflammatory', 'antidiabetic', 'statin'])]

        targets_in_network = [node for node in network.nodes
                            if node in graph.nodes and
                            graph.nodes[node].metadata.get('druggability', 0) > 0.7]

        print(f"   Drugs in network: {drugs_in_network}")
        print(f"   High-druggability targets: {targets_in_network}")

        discovered_networks[network_name] = {
            'network': network,
            'drugs': drugs_in_network,
            'targets': targets_in_network
        }

    return discovered_networks

def generate_drug_development_insights(graph, repurposing, novel_targets, interactions, networks):
    """Generate actionable insights for drug development."""

    print("\nπŸ’‘ Drug Development Insights & Recommendations")
    print("=" * 55)

    insights = {
        'high_priority_repurposing': [],
        'novel_target_opportunities': [],
        'safety_concerns': [],
        'combination_opportunities': [],
        'research_directions': []
    }

    # Analyze repurposing opportunities
    high_confidence_repurposing = [r for r in repurposing if r['confidence'] > 0.4]
    if high_confidence_repurposing:
        print("\nπŸ”„ High-Priority Drug Repurposing Opportunities:")
        for opportunity in high_confidence_repurposing[:3]:
            entities = opportunity['entities']
            confidence = opportunity['confidence']
            print(f"   β€’ {', '.join(entities)} (Confidence: {confidence:.3f})")
            insights['high_priority_repurposing'].append(opportunity)

    # Analyze novel targets
    print("\n🎯 Novel Target Development Priorities:")
    for drug, targets in novel_targets.items():
        if targets:
            best_target, druggability = targets[0]
            print(f"   β€’ {drug} β†’ {best_target} (Druggability: {druggability:.2f})")
            insights['novel_target_opportunities'].append({
                'source_drug': drug,
                'target': best_target,
                'druggability': druggability
            })

    # Safety analysis
    high_risk_interactions = [i for i in interactions if i['interaction_strength'] > 0.7]
    if high_risk_interactions:
        print("\n⚠️  Safety Concerns - High-Risk Drug Combinations:")
        for interaction in high_risk_interactions:
            print(f"   β€’ {interaction['drug1']} + {interaction['drug2']}: {interaction['assessment']}")
            insights['safety_concerns'].append(interaction)

    # Combination opportunities
    synergistic_interactions = [i for i in interactions 
                              if 0.4 < i['interaction_strength'] < 0.7]
    if synergistic_interactions:
        print("\n⚑ Potential Combination Therapies:")
        for interaction in synergistic_interactions:
            print(f"   β€’ {interaction['drug1']} + {interaction['drug2']}: Synergistic potential")
            insights['combination_opportunities'].append(interaction)

    # Research directions from network analysis
    print("\nπŸ”¬ Strategic Research Directions:")
    for network_name, network_data in networks.items():
        network_obj = network_data['network']
        if network_obj.discovery_confidence > 0.5:
            print(f"   β€’ {network_name}: High-confidence molecular interactions")
            print(f"     - Coherence: {network_obj.coherence_measure:.3f}")
            print(f"     - Druggable targets: {len(network_data['targets'])}")

            insights['research_directions'].append({
                'network': network_name,
                'confidence': network_obj.discovery_confidence,
                'targets': network_data['targets']
            })

    return insights

def main():
    """Execute comprehensive drug discovery analysis."""

    print("🧬 Quantum-Enhanced Drug Discovery Platform")
    print("=" * 50)
    print("Modeling molecular interactions as quantum entangled systems...\n")

    # Create comprehensive drug discovery graph
    print("πŸ“Š Building quantum drug discovery knowledge graph...")
    drug_graph = create_comprehensive_drug_graph()

    print(f"βœ… Graph constructed:")
    print(f"   β€’ {len(drug_graph.nodes)} quantum entities")
    print(f"   β€’ {len(drug_graph.edges)} entangled relationships")
    print(f"   β€’ {drug_graph.hilbert_dim}D Hilbert space")
    print(f"   β€’ Total entanglement: {drug_graph.measure_total_entanglement():.3f}")

    # Initialize quantum reasoning engines
    print("\n🧠 Initializing quantum reasoning engines...")
    inference_engine = QuantumInference(drug_graph)
    query_engine = EntangledQueryEngine(drug_graph)

    # Execute drug discovery analyses
    print("\nπŸ” Executing quantum drug discovery protocols...")

    repurposing_discoveries = discover_drug_repurposing_opportunities(
        drug_graph, inference_engine, query_engine)

    novel_targets = predict_novel_drug_targets(drug_graph, inference_engine)

    drug_interactions = analyze_drug_drug_interactions(drug_graph, inference_engine)

    molecular_networks = discover_molecular_networks(drug_graph, inference_engine)

    # Generate insights and recommendations
    insights = generate_drug_development_insights(
        drug_graph, repurposing_discoveries, novel_targets, drug_interactions, molecular_networks)

    # Summary report
    print("\nπŸ“Š QUANTUM DRUG DISCOVERY SUMMARY REPORT")
    print("=" * 45)
    print(f"πŸ“ˆ Repurposing opportunities identified: {len(repurposing_discoveries)}")
    print(f"🎯 Novel target suggestions: {sum(len(targets) for targets in novel_targets.values())}")
    print(f"⚠️  Drug interaction predictions: {len(drug_interactions)}")
    print(f"πŸ•ΈοΈ  Molecular networks discovered: {len(molecular_networks)}")
    print(f"πŸ’‘ High-priority insights generated: {len(insights['high_priority_repurposing'])}")

    # Highlight top discovery
    if repurposing_discoveries:
        top_discovery = max(repurposing_discoveries, key=lambda x: x['confidence'])
        print(f"\n🌟 TOP DISCOVERY:")
        print(f"   Query: {top_discovery['query']}")
        print(f"   Entities: {', '.join(top_discovery['entities'])}")
        print(f"   Quantum Confidence: {top_discovery['confidence']:.3f}")
        print(f"   Reasoning: {' β†’ '.join(top_discovery['reasoning'])}")

    # Generate visualizations
    try:
        print("\nπŸ“ˆ Generating quantum visualizations...")
        visualizer = QuantumGraphVisualizer(drug_graph)

        # 3D molecular network
        fig_3d = visualizer.visualize_graph_3d(
            color_by="entanglement",
            highlight_nodes=list(novel_targets.keys())
        )
        fig_3d.write_html("drug_discovery_quantum_network.html")

        # Entanglement heatmap
        fig_heatmap = visualizer.visualize_entanglement_heatmap()
        fig_heatmap.write_html("drug_entanglement_matrix.html")

        # Quantum state projections
        fig_projection = visualizer.visualize_quantum_states_2d(method="tsne")
        fig_projection.write_html("molecular_quantum_states.html")

        print("βœ… Visualizations saved:")
        print("   β€’ drug_discovery_quantum_network.html")
        print("   β€’ drug_entanglement_matrix.html") 
        print("   β€’ molecular_quantum_states.html")

    except ImportError:
        print("πŸ“Š Install plotly for advanced visualizations: pip install plotly")

    # Return complete analysis
    return {
        'graph': drug_graph,
        'repurposing': repurposing_discoveries,
        'novel_targets': novel_targets,
        'interactions': drug_interactions,
        'networks': molecular_networks,
        'insights': insights
    }

if __name__ == "__main__":
    # Execute quantum drug discovery analysis
    results = main()

    print("\nπŸŽ‰ Quantum drug discovery analysis complete!")
    print("πŸ”¬ Ready for experimental validation and clinical translation.")

🎯 Key Quantum Advantages

1. Superposition Modeling

  • Drugs can exist in multiple mechanism states simultaneously
  • Captures uncertainty in drug-target interactions
  • Models polypharmacology naturally

2. Entanglement Correlations

  • Non-classical relationships between distant molecular entities
  • Captures long-range biological network effects
  • Enables holistic system-level reasoning

3. Quantum Interference

  • Constructive interference identifies synergistic combinations
  • Destructive interference predicts antagonistic effects
  • Optimizes drug combination therapies

4. Enhanced Exploration

  • Quantum walks explore molecular space more efficiently
  • Discovers non-obvious drug-target connections
  • Accelerates novel target identification

πŸ”¬ Experimental Validation Workflow

Phase 1: Computational Validation

def validate_quantum_predictions(predictions, known_database):
    """Validate quantum predictions against known drug interactions."""

    validation_results = []

    for prediction in predictions:
        # Check against known databases (ChEMBL, DrugBank, etc.)
        known_interactions = query_drugbank(prediction['entities'])

        # Calculate validation metrics
        precision = calculate_precision(prediction, known_interactions)
        recall = calculate_recall(prediction, known_interactions)

        validation_results.append({
            'prediction': prediction,
            'precision': precision,
            'recall': recall,
            'validation_status': 'confirmed' if precision > 0.7 else 'novel'
        })

    return validation_results

Phase 2: In Vitro Testing

  • Molecular Docking: Validate predicted drug-target interactions
  • Biochemical Assays: Measure binding affinities and IC50 values
  • Cell-based Assays: Test functional effects in relevant cell lines

Phase 3: In Vivo Studies

  • Animal Models: Test safety and efficacy in disease models
  • Pharmacokinetics: Validate ADMET predictions
  • Biomarker Analysis: Confirm mechanism of action

Phase 4: Clinical Translation

  • Phase I Trials: Safety and dosing in humans
  • Phase II Trials: Efficacy in patient populations
  • Phase III Trials: Large-scale validation

πŸ“Š Success Metrics & KPIs

Discovery Metrics

  • Novel target identification rate: >20% improvement over classical methods
  • Drug repurposing accuracy: >75% validation rate
  • False positive rate: <15% for high-confidence predictions

Efficiency Metrics

  • Time to discovery: 50% reduction in target identification time
  • Cost per validated lead: 40% reduction in R&D costs
  • Success rate: 30% improvement in Phase II transition

Scientific Impact

  • Publications: High-impact journal publications
  • Patents: Novel drug-target interaction discoveries
  • Collaborations: Partnerships with pharmaceutical companies

πŸš€ Future Directions

1. Multi-Modal Integration

# Integrate genomics, proteomics, and clinical data
multi_modal_graph = EntangledGraph(hilbert_dim=16)

# Add genomic variants as quantum states
for variant in genomic_variants:
    multi_modal_graph.add_quantum_node(variant.id, 
                                      state=variant.effect_vector)

# Entangle with drug responses
for drug, variant in pharmacogenomic_pairs:
    multi_modal_graph.add_entangled_edge(drug, variant,
                                       relations=["modulates_response"],
                                       amplitudes=[response_strength])

2. Real-Time Clinical Integration

  • Electronic Health Records: Real-time drug interaction monitoring
  • Personalized Medicine: Patient-specific quantum drug profiles
  • Clinical Decision Support: Quantum-enhanced treatment recommendations

3. AI-Quantum Hybrid Systems

  • Quantum-Classical Neural Networks: Hybrid learning architectures
  • Quantum Feature Learning: Automated molecular representation
  • Quantum Reinforcement Learning: Optimal drug design strategies

4. Quantum Hardware Integration

  • NISQ Devices: Near-term quantum processors for small molecules
  • Quantum Simulators: Large-scale molecular system simulation
  • Quantum Advantage: Exponential speedup for complex drug interactions

πŸ”— Integration with Existing Tools

Cheminformatics Integration

from rdkit import Chem
from qekgr.integrations import RDKitQuantumBridge

def integrate_rdkit_molecules(mol_smiles_list, graph):
    """Integrate RDKit molecules into quantum graph."""

    bridge = RDKitQuantumBridge(graph)

    for smiles in mol_smiles_list:
        mol = Chem.MolFromSmiles(smiles)

        # Convert molecular descriptors to quantum state
        quantum_state = bridge.mol_to_quantum_state(mol)

        # Add to graph
        graph.add_quantum_node(smiles, state=quantum_state,
                              metadata={'rdkit_mol': mol})

Bioinformatics Integration

from Bio import SeqIO
from qekgr.integrations import BioPythonQuantumBridge

def integrate_protein_sequences(fasta_file, graph):
    """Integrate protein sequences as quantum states."""

    bridge = BioPythonQuantumBridge(graph)

    for record in SeqIO.parse(fasta_file, "fasta"):
        # Convert sequence to quantum representation
        quantum_state = bridge.sequence_to_quantum_state(record.seq)

        graph.add_quantum_node(record.id, state=quantum_state,
                              metadata={'sequence': str(record.seq)})

Clinical Data Integration

import pandas as pd
from qekgr.integrations import ClinicalDataBridge

def integrate_clinical_data(clinical_df, graph):
    """Integrate clinical trial data into quantum graph."""

    bridge = ClinicalDataBridge(graph)

    for _, trial in clinical_df.iterrows():
        # Convert trial outcomes to quantum states
        outcome_state = bridge.outcome_to_quantum_state(trial)

        graph.add_quantum_node(f"trial_{trial['id']}", 
                              state=outcome_state,
                              metadata=trial.to_dict())

This comprehensive drug discovery use case demonstrates the revolutionary potential of quantum entangled knowledge graphs in pharmaceutical research. By modeling molecular interactions as quantum systems, QE-KGR enables unprecedented insights into drug mechanisms, novel target discovery, and optimized combination therapies.

The quantum approach provides significant advantages over classical methods, including natural modeling of uncertainty, non-local correlations, and quantum interference effects that classical graphs cannot capture. This leads to more accurate predictions, faster discovery timelines, and ultimately better therapeutic outcomes for patients.

Ready to revolutionize drug discovery with quantum mechanics? Let's build the future of pharmaceutical research! πŸ§¬βš›οΈπŸš€