Quantum Entangled Knowledge Graphs (QE-KGR)¶
π World's First Open-Source Library for Quantum-Enhanced Knowledge Graph Reasoning¶
Revolutionizing knowledge representation through quantum entanglement principle¶
π§ What is QE-KGR?¶
QE-KGR (Quantum Entangled Knowledge Graph Reasoning) represents a paradigm shift in how we model and reason over complex knowledge. By applying quantum mechanics principles to graph theory, QE-KGR enables unprecedented capabilities in knowledge discovery and reasoning.
π Key Innovations¶
- π Quantum Entanglement: Nodes and edges exist in quantum superposition, enabling non-classical correlations
- βοΈ Hilbert Space Embeddings: Knowledge represented in complex vector spaces with quantum phases
- π Interference Patterns: Constructive and destructive interference for enhanced reasoning
- π― Quantum Walks: Graph traversal using quantum mechanical principles
- π Grover-enhanced Search: Quantum amplitude amplification for subgraph discovery
π Quick Start¶
Installation¶
Basic Example¶
import qekgr
from qekgr import EntangledGraph, QuantumInference, EntangledQueryEngine
# Create a quantum knowledge graph
graph = EntangledGraph(hilbert_dim=4)
# Add quantum nodes
alice = graph.add_quantum_node("Alice", state="physicist",
metadata={"field": "quantum_computing"})
bob = graph.add_quantum_node("Bob", state="researcher",
metadata={"field": "ai"})
# Create entangled edge with superposed relations
graph.add_entangled_edge(alice, bob,
relations=["collaborates", "co_authors"],
amplitudes=[0.8, 0.6])
# Quantum reasoning
inference = QuantumInference(graph)
walk_result = inference.quantum_walk(start_node="Alice", steps=10)
# Natural language queries
query_engine = EntangledQueryEngine(graph)
results = query_engine.query("Who might Alice collaborate with in AI research?")
print(f"Query confidence: {results[0].confidence_score:.3f}")
print(f"Answer path: {' -> '.join(results[0].reasoning_path)}")
ποΈ Architecture Overview¶
graph TB
A[EntangledGraph] --> B[QuantumInference]
A --> C[EntangledQueryEngine]
A --> D[QuantumGraphVisualizer]
B --> E[Quantum Walks]
B --> F[Grover Search]
B --> G[Interference Patterns]
C --> H[Natural Language Processing]
C --> I[Hilbert Space Projection]
C --> J[Context Switching]
D --> K[2D/3D Visualization]
D --> L[Entanglement Heatmaps]
D --> M[State Projections]
π¬ Scientific Foundation¶
QE-KGR is built on rigorous quantum mechanical and graph theoretical principles:
Quantum State Representation¶
Each node \(|Οβ©\) in the graph represents a quantum state in Hilbert space \(\mathcal{H}\):
where \(Ξ±_i\) are complex amplitudes and \(\sum_i |Ξ±_i|^2 = 1\).
Entanglement Tensors¶
Edges represent entanglement between quantum states through tensor products:
Quantum Walks¶
Graph traversal follows the quantum walk operator:
where \(S\) is the shift operator and \(C\) is the coin operator.
π Core Modules¶
qekgr.graphs.EntangledGraph¶
- Quantum node and edge representation
- Tensor network storage
- Hilbert space operations
qekgr.reasoning.QuantumInference¶
- Quantum walk algorithms
- Grover-enhanced search
- Entanglement entropy measurements
qekgr.query.EntangledQueryEngine¶
- Natural language query processing
- Hilbert space projections
- Context-aware reasoning
qekgr.utils.QuantumGraphVisualizer¶
- Interactive 2D/3D visualizations
- Entanglement strength heatmaps
- Quantum state projections
π― Applications¶
𧬠Drug Discovery¶
Discover hidden molecular interaction patterns through quantum entanglement analysis.
# Model molecular interactions as quantum states
drug_graph = EntangledGraph()
drug_graph.add_quantum_node("Aspirin", state="anti_inflammatory")
drug_graph.add_quantum_node("Protein_COX1", state="enzyme")
# Quantum-enhanced interaction prediction
predictions = inference.interference_link_prediction("Aspirin")
π¬ Scientific Research¶
Find interdisciplinary connections between research fields.
# Query for cross-domain insights
results = query_engine.query(
"What quantum computing techniques could enhance drug discovery?"
)
π― Recommendation Systems¶
Quantum-enhanced collaborative filtering with entanglement-based similarities.
# Discover user preference entanglements
user_similarities = inference.discover_entangled_subgraph(
seed_nodes=["user123"],
min_entanglement=0.4
)
π οΈ Command Line Interface¶
QE-KGR includes a powerful CLI for interactive exploration:
# Display graph information
qekgr info
# Run quantum queries
qekgr query "Who collaborates with researchers in quantum AI?"
# Perform quantum walks
qekgr walk Alice --steps 10 --bias-relations "collaborates,mentors"
# Generate visualizations
qekgr visualize 3d --output quantum_graph.html
# Discover subgraphs
qekgr discover Alice,Bob --expansion-steps 3
π Documentation¶
- Theory: Mathematical foundations and quantum mechanics
- API Reference: Complete API documentation
- Tutorials: Step-by-step guides
- Examples: Real-world use cases
π€ Community¶
- GitHub Discussions: Ask questions and share ideas
- Issues: Report bugs and request features
- Contributing: Help improve QE-KGR
π Why QE-KGR?¶
| Feature | Classical Graphs | QE-KGR |
|---|---|---|
| Relations | Single, deterministic | Superposed, probabilistic |
| Reasoning | Boolean logic | Quantum interference |
| Discovery | Pattern matching | Entanglement analysis |
| Uncertainty | Not handled | Native quantum uncertainty |
| Correlations | Local only | Non-local entanglement |
π Getting Started¶
Ready to explore quantum-enhanced knowledge graphs?
"In the quantum realm, knowledge is not just connectedβit's entangled." π
Built with β€οΈ by Krishna Bajpai