Skip to content

Quantum Entangled Knowledge Graphs (QE-KGR)

QE-KGR Logo

PyPI - Version PyPI Downloads Python 3.8+ License: Commercial Docs

πŸš€ World's First Open-Source Library for Quantum-Enhanced Knowledge Graph Reasoning

Revolutionizing knowledge representation through quantum entanglement principle


🧠 What is QE-KGR?

QE-KGR (Quantum Entangled Knowledge Graph Reasoning) represents a paradigm shift in how we model and reason over complex knowledge. By applying quantum mechanics principles to graph theory, QE-KGR enables unprecedented capabilities in knowledge discovery and reasoning.

🌟 Key Innovations

  • πŸ”— Quantum Entanglement: Nodes and edges exist in quantum superposition, enabling non-classical correlations
  • βš›οΈ Hilbert Space Embeddings: Knowledge represented in complex vector spaces with quantum phases
  • 🌊 Interference Patterns: Constructive and destructive interference for enhanced reasoning
  • 🎯 Quantum Walks: Graph traversal using quantum mechanical principles
  • πŸ” Grover-enhanced Search: Quantum amplitude amplification for subgraph discovery

πŸš€ Quick Start

Installation

pip install quantum-entangled-knowledge-graphs

Basic Example

import qekgr
from qekgr import EntangledGraph, QuantumInference, EntangledQueryEngine

# Create a quantum knowledge graph
graph = EntangledGraph(hilbert_dim=4)

# Add quantum nodes
alice = graph.add_quantum_node("Alice", state="physicist", 
                              metadata={"field": "quantum_computing"})
bob = graph.add_quantum_node("Bob", state="researcher",
                            metadata={"field": "ai"})

# Create entangled edge with superposed relations
graph.add_entangled_edge(alice, bob, 
                        relations=["collaborates", "co_authors"],
                        amplitudes=[0.8, 0.6])

# Quantum reasoning
inference = QuantumInference(graph)
walk_result = inference.quantum_walk(start_node="Alice", steps=10)

# Natural language queries
query_engine = EntangledQueryEngine(graph)
results = query_engine.query("Who might Alice collaborate with in AI research?")

print(f"Query confidence: {results[0].confidence_score:.3f}")
print(f"Answer path: {' -> '.join(results[0].reasoning_path)}")

πŸ—οΈ Architecture Overview

graph TB
    A[EntangledGraph] --> B[QuantumInference]
    A --> C[EntangledQueryEngine]
    A --> D[QuantumGraphVisualizer]
    B --> E[Quantum Walks]
    B --> F[Grover Search]
    B --> G[Interference Patterns]
    C --> H[Natural Language Processing]
    C --> I[Hilbert Space Projection]
    C --> J[Context Switching]
    D --> K[2D/3D Visualization]
    D --> L[Entanglement Heatmaps]
    D --> M[State Projections]

πŸ”¬ Scientific Foundation

QE-KGR is built on rigorous quantum mechanical and graph theoretical principles:

Quantum State Representation

Each node \(|ψ⟩\) in the graph represents a quantum state in Hilbert space \(\mathcal{H}\):

\[|ψ⟩ = \sum_{i} α_i |i⟩\]

where \(Ξ±_i\) are complex amplitudes and \(\sum_i |Ξ±_i|^2 = 1\).

Entanglement Tensors

Edges represent entanglement between quantum states through tensor products:

\[|ψ_{AB}⟩ = \sum_{ij} T_{ij} |i⟩_A βŠ— |j⟩_B\]

Quantum Walks

Graph traversal follows the quantum walk operator:

\[U = S \cdot C\]

where \(S\) is the shift operator and \(C\) is the coin operator.

πŸ“š Core Modules

qekgr.graphs.EntangledGraph

  • Quantum node and edge representation
  • Tensor network storage
  • Hilbert space operations

qekgr.reasoning.QuantumInference

  • Quantum walk algorithms
  • Grover-enhanced search
  • Entanglement entropy measurements

qekgr.query.EntangledQueryEngine

  • Natural language query processing
  • Hilbert space projections
  • Context-aware reasoning

qekgr.utils.QuantumGraphVisualizer

  • Interactive 2D/3D visualizations
  • Entanglement strength heatmaps
  • Quantum state projections

🎯 Applications

🧬 Drug Discovery

Discover hidden molecular interaction patterns through quantum entanglement analysis.

# Model molecular interactions as quantum states
drug_graph = EntangledGraph()
drug_graph.add_quantum_node("Aspirin", state="anti_inflammatory")
drug_graph.add_quantum_node("Protein_COX1", state="enzyme")

# Quantum-enhanced interaction prediction
predictions = inference.interference_link_prediction("Aspirin")

πŸ”¬ Scientific Research

Find interdisciplinary connections between research fields.

# Query for cross-domain insights
results = query_engine.query(
    "What quantum computing techniques could enhance drug discovery?"
)

🎯 Recommendation Systems

Quantum-enhanced collaborative filtering with entanglement-based similarities.

# Discover user preference entanglements
user_similarities = inference.discover_entangled_subgraph(
    seed_nodes=["user123"], 
    min_entanglement=0.4
)

πŸ› οΈ Command Line Interface

QE-KGR includes a powerful CLI for interactive exploration:

# Display graph information
qekgr info

# Run quantum queries
qekgr query "Who collaborates with researchers in quantum AI?"

# Perform quantum walks
qekgr walk Alice --steps 10 --bias-relations "collaborates,mentors"

# Generate visualizations
qekgr visualize 3d --output quantum_graph.html

# Discover subgraphs
qekgr discover Alice,Bob --expansion-steps 3

πŸ“– Documentation

🀝 Community

πŸ† Why QE-KGR?

Feature Classical Graphs QE-KGR
Relations Single, deterministic Superposed, probabilistic
Reasoning Boolean logic Quantum interference
Discovery Pattern matching Entanglement analysis
Uncertainty Not handled Native quantum uncertainty
Correlations Local only Non-local entanglement

πŸš€ Getting Started

Ready to explore quantum-enhanced knowledge graphs?

  1. Install QE-KGR
  2. Follow the Quick Start Guide
  3. Try the Examples
  4. Read the Theory

"In the quantum realm, knowledge is not just connectedβ€”it's entangled." 🌌

Built with ❀️ by Krishna Bajpai