Quantum Kernels
This guide covers quantum kernel methods available in the Quantum Data Embedding Suite.
Overview
Quantum kernels are similarity measures computed using quantum circuits. They form the foundation of quantum machine learning algorithms, particularly quantum support vector machines (QSVMs). A quantum kernel measures similarity between data points by comparing their quantum state representations.
What is a Quantum Kernel?
A quantum kernel \(K(x_i, x_j)\) computes the similarity between two data points \(x_i\) and \(x_j\) by:
- Encoding both points into quantum states: \(|\psi(x_i)\rangle\) and \(|\psi(x_j)\rangle\)
- Computing their overlap: \(K(x_i, x_j) = |\langle\psi(x_i)|\psi(x_j)\rangle|^2\)
This quantum approach can capture complex data relationships that classical kernels might miss.
Kernel Types
Fidelity Kernel
The fidelity kernel computes the state overlap between quantum embeddings.
Implementation
from quantum_data_embedding_suite.kernels import FidelityKernel
from quantum_data_embedding_suite.embeddings import AngleEmbedding
import numpy as np
# Create embedding and kernel
embedding = AngleEmbedding(n_qubits=4)
kernel = FidelityKernel(embedding, backend="qiskit")
# Compute kernel matrix
X = np.random.randn(50, 4)
K = kernel.compute_kernel(X)
Mathematical Foundation
For quantum states \(|\psi(x_i)\rangle\) and \(|\psi(x_j)\rangle\):
Configuration Options
kernel = FidelityKernel(
embedding=embedding,
backend="qiskit",
shots=1024, # Number of shots for noisy simulation
cache_circuits=True, # Cache quantum circuits
parallel=True # Parallel computation
)
When to Use
- Standard quantum ML applications
- When you need theoretical guarantees
- Comparing different embeddings
- Proof-of-concept experiments
Advantages
- Theoretically well-understood
- Direct state comparison
- Works with any embedding
- Provides quantum advantage potential
Limitations
- Can be expensive to compute
- Sensitive to noise
- May require many measurements
- Limited by quantum hardware constraints
Projected Kernel
The projected kernel uses measurement outcomes instead of full state information.
Implementation
from quantum_data_embedding_suite.kernels import ProjectedKernel
kernel = ProjectedKernel(
embedding=embedding,
measurement_basis="computational", # or "random_pauli"
n_measurements=100,
measurement_strategy="adaptive"
)
K = kernel.compute_kernel(X)
Mathematical Foundation
Using measurement outcomes \(m_i\) and \(m_j\):
Where \(w_k\) are measurement weights and \(m^{(k)}\) are measurement outcomes.
Measurement Strategies
Computational Basis
kernel = ProjectedKernel(
embedding=embedding,
measurement_basis="computational",
n_measurements=1000
)
Random Pauli Measurements
kernel = ProjectedKernel(
embedding=embedding,
measurement_basis="random_pauli",
n_measurements=100,
pauli_weight=2 # Average number of non-identity Paulis
)
Adaptive Measurements
kernel = ProjectedKernel(
embedding=embedding,
measurement_strategy="adaptive",
n_measurements=50,
adaptation_rate=0.1
)
When to Use
- NISQ device compatibility
- When full state access is unavailable
- Reduced measurement requirements
- Hardware-efficient implementations
Advantages
- NISQ-friendly
- Fewer measurement requirements
- Can work with partial information
- Naturally handles noise
Limitations
- Approximation of true kernel
- Requires careful measurement design
- May lose some quantum information
- Performance depends on measurement choice
Trainable Kernel
Trainable kernels have parameters that can be optimized for specific tasks.
Implementation
from quantum_data_embedding_suite.kernels import TrainableKernel
kernel = TrainableKernel(
embedding=embedding,
n_parameters=20,
parameter_bounds=(-np.pi, np.pi),
optimization_method="adam",
learning_rate=0.01
)
# Train the kernel
kernel.fit(X_train, y_train, epochs=100)
# Use trained kernel
K = kernel.compute_kernel(X_test)
Architecture
Trainable kernels add parameterized layers:
# Configure trainable layers
kernel = TrainableKernel(
embedding=embedding,
trainable_layers=[
{"type": "rotation", "gates": ["RY", "RZ"]},
{"type": "entangling", "pattern": "linear"},
{"type": "rotation", "gates": ["RX"]}
]
)
Optimization Methods
Gradient-based Optimization
kernel = TrainableKernel(
embedding=embedding,
optimization_method="adam",
learning_rate=0.01,
gradient_method="parameter_shift"
)
Evolutionary Strategies
kernel = TrainableKernel(
embedding=embedding,
optimization_method="evolutionary",
population_size=50,
mutation_rate=0.1
)
Bayesian Optimization
kernel = TrainableKernel(
embedding=embedding,
optimization_method="bayesian",
acquisition_function="expected_improvement",
n_initial_points=20
)
Training Strategies
Supervised Training
# Train to maximize classification accuracy
kernel.fit(
X_train, y_train,
objective="classification_accuracy",
validation_split=0.2
)
Unsupervised Training
# Train to maximize kernel alignment
kernel.fit(
X_train,
objective="kernel_alignment",
target_kernel=classical_kernel
)
Regularized Training
# Train with regularization
kernel.fit(
X_train, y_train,
objective="classification_accuracy",
regularization=0.01,
regularization_type="l2"
)
When to Use
- Task-specific optimization
- When standard kernels underperform
- Transfer learning scenarios
- Research into quantum advantage
Advantages
- Adaptive to specific problems
- Can learn optimal representations
- Potential for improved performance
- Flexible architecture
Limitations
- Requires optimization
- Risk of overfitting
- Higher computational cost
- May need careful regularization
Kernel Computation
Computing Kernel Matrices
Full Kernel Matrix
# Compute full kernel matrix
K = kernel.compute_kernel(X)
print(f"Kernel shape: {K.shape}")
print(f"Kernel is symmetric: {np.allclose(K, K.T)}")
Kernel Between Different Sets
# Compute kernel between training and test sets
K_train_test = kernel.compute_kernel(X_train, X_test)
print(f"Cross-kernel shape: {K_train_test.shape}")
Kernel Diagonal
# Compute only diagonal elements (faster)
K_diag = kernel.compute_diagonal(X)
print(f"Diagonal shape: {K_diag.shape}")
Performance Optimization
Batch Processing
# Process large datasets in batches
kernel = FidelityKernel(
embedding=embedding,
batch_size=100, # Process 100 samples at a time
n_jobs=4 # Use 4 parallel processes
)
K = kernel.compute_kernel(large_X)
Caching
# Enable caching for repeated computations
kernel = FidelityKernel(
embedding=embedding,
cache_circuits=True,
cache_size=1000 # Cache up to 1000 circuits
)
Approximate Computation
# Use approximation for speed
kernel = FidelityKernel(
embedding=embedding,
approximation="random_sampling",
n_samples=100 # Use 100 random samples
)
Kernel Analysis
Kernel Properties
Spectrum Analysis
from quantum_data_embedding_suite.analysis import analyze_kernel_spectrum
# Analyze kernel eigenvalues
spectrum_info = analyze_kernel_spectrum(K)
print(f"Effective rank: {spectrum_info['effective_rank']}")
print(f"Condition number: {spectrum_info['condition_number']}")
Kernel Alignment
from quantum_data_embedding_suite.metrics import kernel_alignment
# Compare quantum and classical kernels
alignment = kernel_alignment(K_quantum, K_classical)
print(f"Kernel alignment: {alignment:.3f}")
Expressivity Metrics
from quantum_data_embedding_suite.metrics import kernel_expressivity
# Measure kernel expressivity
expressivity = kernel_expressivity(
kernel=kernel,
X=X,
n_samples=1000
)
print(f"Kernel expressivity: {expressivity:.3f}")
Visualization
Kernel Matrix Heatmap
from quantum_data_embedding_suite.visualization import plot_kernel_matrix
# Visualize kernel matrix
plot_kernel_matrix(
K,
labels=y,
title="Quantum Kernel Matrix",
save_path="kernel_heatmap.png"
)
Kernel Eigenspectrum
from quantum_data_embedding_suite.visualization import plot_kernel_spectrum
# Plot eigenvalue distribution
plot_kernel_spectrum(
K,
n_eigenvalues=50,
title="Kernel Eigenspectrum"
)
Kernel PCA
from quantum_data_embedding_suite.visualization import plot_kernel_pca
# Visualize data in kernel space
plot_kernel_pca(
K,
labels=y,
n_components=2,
title="Kernel PCA Visualization"
)
Advanced Usage
Custom Kernels
Creating Custom Kernel Classes
from quantum_data_embedding_suite.kernels import BaseKernel
class CustomKernel(BaseKernel):
def __init__(self, embedding, custom_param=1.0):
super().__init__(embedding)
self.custom_param = custom_param
def _compute_element(self, x_i, x_j):
"""Compute kernel element K(x_i, x_j)"""
# Custom kernel computation logic
circuit_i = self.embedding.embed(x_i)
circuit_j = self.embedding.embed(x_j)
# Custom similarity computation
similarity = self._custom_similarity(circuit_i, circuit_j)
return similarity * self.custom_param
Composite Kernels
class CompositeKernel(BaseKernel):
def __init__(self, kernels, weights=None):
self.kernels = kernels
self.weights = weights or [1.0] * len(kernels)
def compute_kernel(self, X, Y=None):
"""Combine multiple kernels"""
K_combined = np.zeros((len(X), len(Y or X)))
for kernel, weight in zip(self.kernels, self.weights):
K_i = kernel.compute_kernel(X, Y)
K_combined += weight * K_i
return K_combined / sum(self.weights)
Kernel Selection
Automatic Kernel Selection
from quantum_data_embedding_suite.selection import select_best_kernel
# Automatically select best kernel
best_kernel = select_best_kernel(
X_train, y_train,
kernel_types=["fidelity", "projected", "trainable"],
embedding_types=["angle", "iqp"],
cv_folds=5,
metric="accuracy"
)
Cross-Validation
from sklearn.model_selection import cross_val_score
from sklearn.svm import SVC
# Evaluate kernel with cross-validation
K = kernel.compute_kernel(X)
svm = SVC(kernel='precomputed')
scores = cross_val_score(svm, K, y, cv=5)
print(f"CV Accuracy: {scores.mean():.3f} ± {scores.std():.3f}")
Hybrid Quantum-Classical Kernels
Concatenated Features
class HybridKernel(BaseKernel):
def __init__(self, quantum_kernel, classical_kernel, weight=0.5):
self.quantum_kernel = quantum_kernel
self.classical_kernel = classical_kernel
self.weight = weight
def compute_kernel(self, X, Y=None):
K_quantum = self.quantum_kernel.compute_kernel(X, Y)
K_classical = self.classical_kernel.compute_kernel(X, Y)
return self.weight * K_quantum + (1 - self.weight) * K_classical
Feature Space Combination
def create_hybrid_features(X, quantum_kernel):
"""Combine classical and quantum features"""
# Classical features
classical_features = X
# Quantum kernel features (kernel PCA)
K = quantum_kernel.compute_kernel(X)
eigenvals, eigenvecs = np.linalg.eigh(K)
quantum_features = eigenvecs[:, -10:] # Top 10 components
# Combine features
return np.hstack([classical_features, quantum_features])
Best Practices
Kernel Design
- Start simple: Begin with fidelity kernels
- Match embedding: Choose kernel appropriate for your embedding
- Consider hardware: Use projected kernels for NISQ devices
- Monitor performance: Track kernel quality metrics
Optimization
- Batch processing: Use batches for large datasets
- Caching: Enable circuit caching for repeated computations
- Parallel execution: Use multiple cores when available
- Approximation: Consider approximate methods for speed
Validation
- Cross-validation: Always validate kernel performance
- Baseline comparison: Compare against classical kernels
- Ablation studies: Test different kernel components
- Hardware testing: Validate on real quantum devices
Troubleshooting
Common Issues
- Numerical instability: Check for negative eigenvalues
- Poor performance: Try different embeddings or kernel types
- Memory issues: Use batch processing or approximation
- Slow computation: Enable caching and parallelization
Debugging Tools
# Kernel diagnostics
from quantum_data_embedding_suite.diagnostics import diagnose_kernel
diagnosis = diagnose_kernel(kernel, X, y)
print(diagnosis.summary())
Integration with Machine Learning
Scikit-learn Integration
from sklearn.svm import SVC
from sklearn.pipeline import Pipeline
from quantum_data_embedding_suite.sklearn import QuantumKernelTransformer
# Create pipeline with quantum kernel
pipeline = Pipeline([
('quantum_kernel', QuantumKernelTransformer(kernel)),
('svm', SVC(kernel='precomputed'))
])
# Train and evaluate
pipeline.fit(X_train, y_train)
accuracy = pipeline.score(X_test, y_test)
Custom Estimators
from sklearn.base import BaseEstimator, ClassifierMixin
class QuantumSVM(BaseEstimator, ClassifierMixin):
def __init__(self, quantum_kernel, C=1.0):
self.quantum_kernel = quantum_kernel
self.C = C
def fit(self, X, y):
K = self.quantum_kernel.compute_kernel(X)
self.svm_ = SVC(kernel='precomputed', C=self.C)
self.svm_.fit(K, y)
return self
def predict(self, X):
K = self.quantum_kernel.compute_kernel(X, self.X_train_)
return self.svm_.predict(K)