Backends
This guide covers the quantum computing backends available in the Quantum Data Embedding Suite.
Overview
Backends provide the interface between your quantum embeddings and actual quantum computation. The Quantum Data Embedding Suite supports multiple backends to ensure flexibility and compatibility with different quantum computing platforms.
Available Backends
Qiskit Backend
The default backend using IBM's Qiskit framework.
Basic Usage
from quantum_data_embedding_suite.backends import QiskitBackend
# Create Qiskit backend
backend = QiskitBackend(
device="aer_simulator",
shots=1024,
optimization_level=1
)
# Use with embedding
from quantum_data_embedding_suite import QuantumEmbeddingPipeline
pipeline = QuantumEmbeddingPipeline(
embedding_type="angle",
n_qubits=4,
backend=backend
)
Simulator Options
Statevector Simulator
backend = QiskitBackend(
device="statevector_simulator",
shots=None, # Exact computation
precision="double"
)
Noisy Simulator
from qiskit.providers.aer.noise import NoiseModel
# Create noise model
noise_model = NoiseModel.from_backend(ibm_backend)
backend = QiskitBackend(
device="aer_simulator",
shots=1024,
noise_model=noise_model
)
GPU Simulator
Real Hardware
IBM Quantum Devices
from qiskit import IBMQ
# Load IBM Quantum account
IBMQ.load_account()
provider = IBMQ.get_provider(hub='ibm-q')
# Select device
device = provider.get_backend('ibmq_qasm_simulator')
backend = QiskitBackend(
device=device,
shots=1024,
optimization_level=3 # Maximum optimization for real hardware
)
Configuration Options
backend = QiskitBackend(
device="aer_simulator",
shots=1024,
optimization_level=2,
seed_simulator=42,
memory=True, # Return individual shot results
max_credits=10, # For IBM Quantum devices
coupling_map=None, # Custom coupling map
basis_gates=None, # Custom gate set
initial_layout=None, # Custom qubit mapping
layout_method="trivial", # Layout optimization
routing_method="stochastic", # Routing optimization
translation_method="translator", # Gate translation
scheduling_method=None, # Instruction scheduling
instruction_durations=None, # Gate durations
dt=None, # System time unit
approximation_degree=1.0 # Approximation level for synthesis
)
PennyLane Backend
Alternative backend using Xanadu's PennyLane framework.
Basic Usage
from quantum_data_embedding_suite.backends import PennyLaneBackend
# Create PennyLane backend
backend = PennyLaneBackend(
device="default.qubit",
shots=1024,
wires=4
)
# Use with embedding
pipeline = QuantumEmbeddingPipeline(
embedding_type="amplitude",
n_qubits=4,
backend=backend
)
Device Options
Default Simulator
Lightning Simulator
Cirq Integration
Hardware Providers
# AWS Braket
backend = PennyLaneBackend(
device="braket.aws.qubit",
device_arn="arn:aws:braket::device/qpu/ionq/ionQdevice",
shots=1000,
wires=4
)
# IonQ
backend = PennyLaneBackend(
device="ionq.qpu",
token="your_ionq_token",
shots=1024,
wires=4
)
Automatic Differentiation
# Enable automatic differentiation
backend = PennyLaneBackend(
device="default.qubit",
diff_method="backprop", # or "parameter-shift", "finite-diff"
gradient_kwargs={"h": 1e-7}
)
# Use with trainable embeddings
from quantum_data_embedding_suite.embeddings import DataReuploadingEmbedding
embedding = DataReuploadingEmbedding(
n_qubits=4,
n_layers=3,
trainable=True
)
pipeline = QuantumEmbeddingPipeline(
embedding=embedding,
backend=backend
)
Backend Comparison
Feature Matrix
Feature | Qiskit | PennyLane |
---|---|---|
Simulators | ✅ Comprehensive | ✅ Good coverage |
Real Hardware | ✅ IBM Quantum | ✅ Multiple providers |
Noise Models | ✅ Advanced | ✅ Basic |
Optimization | ✅ Advanced | ✅ Basic |
Auto-diff | ❌ Limited | ✅ Native |
GPU Support | ✅ Native | ✅ Via plugins |
Hybrid Algorithms | ✅ Good | ✅ Excellent |
Performance Comparison
import time
import numpy as np
def benchmark_backends():
X = np.random.randn(100, 4)
backends = {
"qiskit_statevector": QiskitBackend(device="statevector_simulator"),
"qiskit_aer": QiskitBackend(device="aer_simulator", shots=1024),
"pennylane_default": PennyLaneBackend(device="default.qubit"),
"pennylane_lightning": PennyLaneBackend(device="lightning.qubit")
}
results = {}
for name, backend in backends.items():
pipeline = QuantumEmbeddingPipeline(
embedding_type="angle",
n_qubits=4,
backend=backend
)
start_time = time.time()
K = pipeline.fit_transform(X[:20]) # Small subset for timing
end_time = time.time()
results[name] = {
"time": end_time - start_time,
"accuracy": np.trace(K) / len(K) # Rough accuracy measure
}
return results
# Run benchmark
benchmark_results = benchmark_backends()
Custom Backends
Creating Custom Backend
from quantum_data_embedding_suite.backends import BaseBackend
class CustomBackend(BaseBackend):
def __init__(self, custom_param=1.0):
super().__init__()
self.custom_param = custom_param
def execute_circuit(self, circuit, shots=None):
"""Execute quantum circuit and return results"""
# Implement custom execution logic
# This is where you'd interface with your quantum computing platform
# Example: Convert to your platform's circuit format
custom_circuit = self._convert_circuit(circuit)
# Execute on your platform
results = your_platform.execute(custom_circuit, shots=shots)
# Convert results to standard format
return self._convert_results(results)
def get_statevector(self, circuit):
"""Get exact statevector (for simulators)"""
# Implement statevector computation
pass
def get_fidelity(self, circuit1, circuit2):
"""Compute fidelity between two circuits"""
# Implement fidelity computation
pass
def _convert_circuit(self, circuit):
"""Convert from standard format to backend format"""
# Implement circuit conversion
pass
def _convert_results(self, results):
"""Convert results to standard format"""
# Implement result conversion
pass
Backend Plugin System
# Register custom backend
from quantum_data_embedding_suite.backends import register_backend
@register_backend("my_custom_backend")
class MyCustomBackend(BaseBackend):
def __init__(self, **kwargs):
super().__init__()
# Custom initialization
def execute_circuit(self, circuit, shots=None):
# Custom implementation
pass
# Use registered backend
pipeline = QuantumEmbeddingPipeline(
embedding_type="angle",
n_qubits=4,
backend="my_custom_backend"
)
Backend Configuration
Configuration Files
Create backend configuration files for easy setup:
# backends.yaml
qiskit:
default:
device: "aer_simulator"
shots: 1024
optimization_level: 1
hardware:
device: "ibmq_qasm_simulator"
shots: 8192
optimization_level: 3
gpu:
device: "aer_simulator_gpu"
shots: 1024
gpu: true
pennylane:
default:
device: "default.qubit"
shots: 1024
lightning:
device: "lightning.qubit"
shots: 1024
# Load configuration
from quantum_data_embedding_suite.config import load_backend_config
config = load_backend_config("backends.yaml")
backend = config.create_backend("qiskit.hardware")
Environment Variables
# Set default backend
export QDES_DEFAULT_BACKEND=qiskit
export QDES_DEFAULT_SHOTS=1024
# IBM Quantum credentials
export IBMQ_TOKEN=your_token_here
export IBMQ_URL=https://auth.quantum-computing.ibm.com/api
# AWS Braket credentials
export AWS_ACCESS_KEY_ID=your_key
export AWS_SECRET_ACCESS_KEY=your_secret
export AWS_DEFAULT_REGION=us-east-1
Hardware-Specific Considerations
IBM Quantum
Device Selection
from qiskit import IBMQ
from quantum_data_embedding_suite.utils import select_best_device
# Automatically select best available device
IBMQ.load_account()
provider = IBMQ.get_provider()
best_device = select_best_device(
provider=provider,
n_qubits=4,
criteria=["queue_length", "gate_error", "readout_error"]
)
backend = QiskitBackend(device=best_device, shots=1024)
Calibration Data
# Use device calibration data
device = provider.get_backend('ibmq_5_yorktown')
properties = device.properties()
# Configure backend with calibration
backend = QiskitBackend(
device=device,
shots=1024,
use_calibration=True,
properties=properties
)
Error Mitigation
from qiskit.ignis.mitigation import CompleteMeasFitter
# Measurement error mitigation
backend = QiskitBackend(
device=device,
shots=1024,
measurement_error_mitigation=True,
mitigation_method="complete"
)
AWS Braket
# Configure AWS Braket backend
import boto3
backend = PennyLaneBackend(
device="braket.aws.qubit",
device_arn="arn:aws:braket::device/qpu/ionq/ionQdevice",
shots=1000,
aws_session=boto3.Session(),
poll_timeout_seconds=86400
)
IonQ
# Configure IonQ backend
backend = PennyLaneBackend(
device="ionq.qpu",
token="your_ionq_token",
shots=1024,
wires=4,
target="qpu" # or "simulator"
)
Optimization and Performance
Circuit Optimization
# Enable circuit optimization
backend = QiskitBackend(
device="aer_simulator",
shots=1024,
optimization_level=3, # Maximum optimization
optimization_passes=[
"RemoveRedundantGates",
"CommutativeCancellation",
"OptimizeSwapBeforeNativeGates"
]
)
Parallel Execution
# Enable parallel execution
backend = QiskitBackend(
device="aer_simulator",
shots=1024,
max_parallel_threads=4,
max_parallel_experiments=10
)
Memory Management
# Configure memory usage
backend = QiskitBackend(
device="aer_simulator",
shots=1024,
max_memory_mb=8192,
memory_mapping=True
)
Batch Processing
# Efficient batch processing
class BatchBackend:
def __init__(self, base_backend, batch_size=100):
self.base_backend = base_backend
self.batch_size = batch_size
def execute_batch(self, circuits):
results = []
for i in range(0, len(circuits), self.batch_size):
batch = circuits[i:i+self.batch_size]
batch_results = self.base_backend.execute_circuits(batch)
results.extend(batch_results)
return results
Error Handling and Debugging
Error Handling
from quantum_data_embedding_suite.backends import BackendError
try:
backend = QiskitBackend(device="nonexistent_device")
result = backend.execute_circuit(circuit)
except BackendError as e:
print(f"Backend error: {e}")
# Fallback to simulator
backend = QiskitBackend(device="aer_simulator")
Debugging Tools
# Enable verbose logging
import logging
logging.basicConfig(level=logging.DEBUG)
backend = QiskitBackend(
device="aer_simulator",
shots=1024,
verbose=True,
log_level="DEBUG"
)
# Circuit inspection
circuit = embedding.embed(data_point)
print(f"Circuit depth: {circuit.depth()}")
print(f"Circuit gates: {circuit.count_ops()}")
# Backend diagnostics
diagnostics = backend.diagnose()
print(f"Backend status: {diagnostics['status']}")
print(f"Available memory: {diagnostics['memory_mb']} MB")
Performance Monitoring
from quantum_data_embedding_suite.monitoring import BackendMonitor
# Monitor backend performance
monitor = BackendMonitor(backend)
with monitor:
result = backend.execute_circuit(circuit)
print(f"Execution time: {monitor.execution_time:.3f}s")
print(f"Memory usage: {monitor.peak_memory_mb:.1f} MB")
print(f"Queue time: {monitor.queue_time:.3f}s")
Best Practices
Backend Selection
- Start with simulators for development and testing
- Use GPU simulators for large-scale experiments
- Choose hardware based on your specific requirements
- Consider queue times for real devices
Performance Optimization
- Enable circuit optimization for real hardware
- Use appropriate shot counts (1024 for development, more for production)
- Batch operations when possible
- Cache results for repeated computations
Error Mitigation
- Use error mitigation on real hardware
- Monitor device calibration data
- Implement fallback strategies
- Validate results with simulators
Resource Management
- Monitor queue usage on shared devices
- Optimize circuit depth for NISQ devices
- Use appropriate memory settings
- Clean up resources after use
Troubleshooting
Common Issues
Connection Problems
Issue: Cannot connect to quantum device Solutions:
- Check internet connection
- Verify API tokens
- Check device availability
- Use simulator as fallback
Performance Issues
Issue: Slow execution times Solutions:
- Use GPU simulators
- Enable parallel execution
- Reduce circuit complexity
- Use approximate methods
Memory Errors
Issue: Out of memory errors Solutions:
- Reduce number of qubits
- Use statevector simulator only when necessary
- Increase system memory
- Use batch processing
Accuracy Issues
Issue: Unexpected results Solutions:
- Increase shot count
- Check circuit implementation
- Verify device calibration
- Compare with simulator results
Getting Help
- Check device status pages
- Review provider documentation
- Test with simulators first
- Contact provider support for hardware issues
- Report bugs to package maintainers
Migration Guide
From Qiskit to PennyLane
# Qiskit version
qiskit_backend = QiskitBackend(device="aer_simulator", shots=1024)
# Equivalent PennyLane version
pennylane_backend = PennyLaneBackend(device="default.qubit", shots=1024)
# Update pipeline
pipeline = QuantumEmbeddingPipeline(
embedding_type="angle",
n_qubits=4,
backend=pennylane_backend # Changed backend
)
Backend Abstraction
def create_backend(backend_type, **kwargs):
"""Factory function for creating backends"""
if backend_type == "qiskit":
return QiskitBackend(**kwargs)
elif backend_type == "pennylane":
return PennyLaneBackend(**kwargs)
else:
raise ValueError(f"Unknown backend type: {backend_type}")
# Use abstraction
backend = create_backend("qiskit", device="aer_simulator", shots=1024)