Hardware Integration
In [ ]:
Copied!
# Hardware Integration Tutorial
# This tutorial demonstrates how to integrate quantum data embeddings with real quantum hardware platforms.
## Prerequisites
## Before starting this tutorial, ensure you have:
# - Access to quantum hardware (IBM Quantum, IonQ, or Rigetti)
# - Appropriate API credentials configured
# - Understanding of quantum embedding basics
## IBM Quantum Integration
### Setting Up IBM Quantum Access
from qiskit import IBMQ
from quantum_data_embedding_suite.backends import QiskitBackend
# Save your IBM Quantum account (do this once)
# IBMQ.save_account('YOUR_API_TOKEN')
# Load account
IBMQ.load_account()
# Get provider
provider = IBMQ.get_provider(hub='ibm-q', group='open', project='main')
# List available backends
backends = provider.backends()
print("Available IBM Quantum backends:")
for backend in backends:
print(f"- {backend.name()}: {backend.status().operational}")
### Using Real Quantum Hardware
from quantum_data_embedding_suite.embeddings import AngleEmbedding
from quantum_data_embedding_suite.kernels import FidelityKernel
import numpy as np
# Create embedding
embedding = AngleEmbedding(n_qubits=4)
# Configure hardware backend
hardware_backend = QiskitBackend(
provider=provider,
backend_name="ibmq_manila", # Example backend
shots=1024,
optimization_level=2
)
# Set backend in embedding
embedding.set_backend(hardware_backend)
# Prepare data
X = np.random.randn(10, 4) * 0.5 # Keep data bounded
# Create kernel with hardware backend
kernel = FidelityKernel(embedding=embedding)
# Compute kernel matrix on real hardware
print("Computing kernel matrix on real quantum hardware...")
K = kernel.compute_kernel_matrix(X)
print(f"Kernel matrix shape: {K.shape}")
print(f"Kernel matrix condition number: {np.linalg.cond(K):.2e}")
## Error Mitigation Strategies
### Measurement Error Mitigation
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
def setup_error_mitigation(backend, qubits):
"""Setup measurement error mitigation"""
# Create calibration circuits
cal_circuits, state_labels = complete_meas_cal(
qubit_list=qubits,
circlabel='cal'
)
# Execute calibration circuits
cal_job = backend.run(cal_circuits, shots=8192)
cal_results = cal_job.result()
# Create fitter
meas_fitter = CompleteMeasFitter(cal_results, state_labels)
return meas_fitter
# Setup error mitigation
qubits = [0, 1, 2, 3]
meas_filter = setup_error_mitigation(hardware_backend.backend, qubits)
# Apply error mitigation to results
def apply_error_mitigation(raw_counts, meas_filter):
"""Apply measurement error mitigation to results"""
mitigated_counts = meas_filter.filter.apply(raw_counts)
return mitigated_counts
### Zero-Noise Extrapolation
def zero_noise_extrapolation(embedding, X, noise_levels, shots=1024):
"""Perform zero-noise extrapolation"""
results = []
for noise_level in noise_levels:
# Create noisy backend
noisy_backend = create_noisy_backend(noise_level)
embedding.set_backend(noisy_backend)
# Compute metric with noise
kernel = FidelityKernel(embedding=embedding)
K = kernel.compute_kernel_matrix(X)
# Store result
results.append(np.trace(K))
# Extrapolate to zero noise
from scipy.optimize import curve_fit
def exponential_decay(x, a, b, c):
return a * np.exp(-b * x) + c
popt, _ = curve_fit(exponential_decay, noise_levels, results)
zero_noise_result = popt[0] + popt[2] # a + c
return zero_noise_result, results
## Cloud Platform Integration
### Amazon Braket Integration
from braket.aws import AwsDevice
from braket.devices import LocalSimulator
# Use local simulator for development
local_device = LocalSimulator()
# Use cloud simulator
sv1_device = AwsDevice("arn:aws:braket:::device/quantum-simulator/amazon/sv1")
# Use real quantum hardware (IonQ)
ionq_device = AwsDevice("arn:aws:braket:::device/qpu/ionq/ionQdevice")
# Create Braket backend wrapper
class BraketBackend:
def __init__(self, device, shots=1024):
self.device = device
self.shots = shots
def execute(self, circuit):
"""Execute circuit on Braket device"""
# Convert circuit to Braket format
braket_circuit = self.convert_to_braket(circuit)
# Submit task
task = self.device.run(braket_circuit, shots=self.shots)
# Get results
result = task.result()
return result.measurement_counts
def convert_to_braket(self, circuit):
"""Convert from Qiskit/PennyLane to Braket circuit"""
# Implementation depends on source circuit format
pass
### Google Cirq Integration
import cirq
from cirq.google import Foxtail
# Create Cirq device
device = Foxtail
# Define quantum embedding circuit in Cirq
def create_cirq_embedding(data, qubits):
"""Create embedding circuit in Cirq"""
circuit = cirq.Circuit()
for i, x in enumerate(data):
circuit.append(cirq.ry(x).on(qubits[i % len(qubits)]))
return circuit
# Execute on Google quantum hardware (when available)
# This requires access to Google Quantum AI
## Hardware-Specific Optimizations
### Connectivity-Aware Circuit Design
def optimize_for_connectivity(circuit, coupling_map):
"""Optimize circuit for hardware connectivity"""
from qiskit.compiler import transpile
# Transpile with hardware constraints
optimized_circuit = transpile(
circuit,
coupling_map=coupling_map,
optimization_level=3,
routing_method='sabre',
translation_method='synthesis'
)
return optimized_circuit
# Example: Optimize for IBM hardware
coupling_map = [[0, 1], [1, 0], [1, 2], [2, 1], [2, 3], [3, 2]]
optimized_circuit = optimize_for_connectivity(circuit, coupling_map)
### Native Gate Decomposition
def decompose_to_native_gates(circuit, basis_gates):
"""Decompose circuit to native hardware gates"""
from qiskit.compiler import transpile
transpiled = transpile(
circuit,
basis_gates=basis_gates,
optimization_level=2
)
return transpiled
# IBM native gates
ibm_basis = ['id', 'rz', 'sx', 'x', 'cx']
native_circuit = decompose_to_native_gates(circuit, ibm_basis)
## Performance Monitoring
### Quantum Volume Assessment
def assess_quantum_volume(backend, n_qubits):
"""Assess effective quantum volume of backend"""
from qiskit.ignis.verification.quantum_volume import qv_circuits, QVFitter
# Create quantum volume circuits
qv_circs, qv_circs_nomeas = qv_circuits(
qubit_lists=[[i for i in range(n_qubits)]],
ntrials=100
)
# Execute circuits
job = backend.run(qv_circs, shots=1024)
qv_result = job.result()
# Analyze results
qv_fitter = QVFitter()
qv_fitter.add_data(qv_result)
# Check if quantum volume is achieved
qv_success = qv_fitter.calc_statistics()
return qv_success
# Assess quantum volume
qv_result = assess_quantum_volume(hardware_backend.backend, 4)
print(f"Quantum Volume achieved: {qv_result}")
### Real-time Performance Tracking
class HardwarePerformanceTracker:
"""Track hardware performance metrics"""
def __init__(self):
self.metrics = {
'execution_times': [],
'error_rates': [],
'queue_times': [],
'timestamps': []
}
def track_execution(self, backend, circuit):
"""Track single execution performance"""
import time
start_time = time.time()
# Submit job
job = backend.run(circuit, shots=1024)
# Wait for completion and track queue time
queue_start = time.time()
result = job.result()
queue_time = time.time() - queue_start
execution_time = time.time() - start_time
# Estimate error rate from result fidelity
error_rate = self.estimate_error_rate(result)
# Record metrics
self.metrics['execution_times'].append(execution_time)
self.metrics['error_rates'].append(error_rate)
self.metrics['queue_times'].append(queue_time)
self.metrics['timestamps'].append(time.time())
def estimate_error_rate(self, result):
"""Estimate error rate from measurement results"""
# Simple heuristic based on result distribution
counts = result.get_counts()
total_shots = sum(counts.values())
# Expect some distribution - high concentration suggests errors
max_count = max(counts.values())
error_estimate = 1 - (max_count / total_shots)
return error_estimate
def generate_report(self):
"""Generate performance report"""
import matplotlib.pyplot as plt
fig, axes = plt.subplots(2, 2, figsize=(12, 8))
# Execution times
axes[0, 0].plot(self.metrics['timestamps'], self.metrics['execution_times'])
axes[0, 0].set_title('Execution Times')
axes[0, 0].set_ylabel('Time (s)')
# Error rates
axes[0, 1].plot(self.metrics['timestamps'], self.metrics['error_rates'])
axes[0, 1].set_title('Error Rates')
axes[0, 1].set_ylabel('Error Rate')
# Queue times
axes[1, 0].plot(self.metrics['timestamps'], self.metrics['queue_times'])
axes[1, 0].set_title('Queue Times')
axes[1, 0].set_ylabel('Time (s)')
# Summary statistics
axes[1, 1].text(0.1, 0.8, f"Avg Execution: {np.mean(self.metrics['execution_times']):.2f}s")
axes[1, 1].text(0.1, 0.6, f"Avg Error Rate: {np.mean(self.metrics['error_rates']):.3f}")
axes[1, 1].text(0.1, 0.4, f"Avg Queue Time: {np.mean(self.metrics['queue_times']):.2f}s")
axes[1, 1].set_title('Summary Statistics')
axes[1, 1].axis('off')
plt.tight_layout()
plt.show()
# Use performance tracker
tracker = HardwarePerformanceTracker()
# Track multiple executions
for _ in range(10):
tracker.track_execution(hardware_backend.backend, test_circuit)
# Generate report
tracker.generate_report()
## Best Practices for Hardware Execution
### 1. Circuit Optimization
## - Minimize circuit depth
## - Use native gates when possible
## - Apply connectivity-aware routing
### 2. Error Mitigation
## - Implement measurement error correction
## - Use zero-noise extrapolation for critical computations
## - Consider readout error mitigation
### 3. Resource Management
##- Monitor queue times and job status
## - Batch multiple circuits when possible
## Use appropriate shot counts for statistical accuracy
### 4. Cost Optimization
## - Test on simulators before hardware execution
## - Use hardware credits efficiently
## - Monitor usage and billing
## Troubleshooting Common Issues
### Authentication Problems
# Clear and reset IBM Quantum account
IBMQ.delete_account()
IBMQ.save_account('NEW_API_TOKEN')
IBMQ.load_account()
### Circuit Compilation Errors
# Check circuit compatibility
def check_circuit_compatibility(circuit, backend):
"""Check if circuit is compatible with backend"""
config = backend.configuration()
# Check qubit count
if circuit.num_qubits > config.n_qubits:
print(f"Error: Circuit requires {circuit.num_qubits} qubits, backend has {config.n_qubits}")
return False
# Check gate compatibility
circuit_gates = set(circuit.count_ops().keys())
backend_gates = set(config.basis_gates)
if not circuit_gates.issubset(backend_gates):
unsupported = circuit_gates - backend_gates
print(f"Warning: Unsupported gates: {unsupported}")
return True
# Check compatibility before execution
if check_circuit_compatibility(circuit, hardware_backend.backend):
result = hardware_backend.execute(circuit)
## Next Steps
###- Explore advanced error mitigation techniques
### - Implement custom calibration protocols
### - Develop hardware-aware algorithm design
### - Scale to larger quantum systems
## Further Reading
#@# - [IBM Quantum Documentation](https://qiskit.org/documentation/)
### - [Amazon Braket Documentation](https://docs.aws.amazon.com/braket/)
### - [Quantum Error Correction](https://arxiv.org/abs/quant-ph/0504218)
# Hardware Integration Tutorial
# This tutorial demonstrates how to integrate quantum data embeddings with real quantum hardware platforms.
## Prerequisites
## Before starting this tutorial, ensure you have:
# - Access to quantum hardware (IBM Quantum, IonQ, or Rigetti)
# - Appropriate API credentials configured
# - Understanding of quantum embedding basics
## IBM Quantum Integration
### Setting Up IBM Quantum Access
from qiskit import IBMQ
from quantum_data_embedding_suite.backends import QiskitBackend
# Save your IBM Quantum account (do this once)
# IBMQ.save_account('YOUR_API_TOKEN')
# Load account
IBMQ.load_account()
# Get provider
provider = IBMQ.get_provider(hub='ibm-q', group='open', project='main')
# List available backends
backends = provider.backends()
print("Available IBM Quantum backends:")
for backend in backends:
print(f"- {backend.name()}: {backend.status().operational}")
### Using Real Quantum Hardware
from quantum_data_embedding_suite.embeddings import AngleEmbedding
from quantum_data_embedding_suite.kernels import FidelityKernel
import numpy as np
# Create embedding
embedding = AngleEmbedding(n_qubits=4)
# Configure hardware backend
hardware_backend = QiskitBackend(
provider=provider,
backend_name="ibmq_manila", # Example backend
shots=1024,
optimization_level=2
)
# Set backend in embedding
embedding.set_backend(hardware_backend)
# Prepare data
X = np.random.randn(10, 4) * 0.5 # Keep data bounded
# Create kernel with hardware backend
kernel = FidelityKernel(embedding=embedding)
# Compute kernel matrix on real hardware
print("Computing kernel matrix on real quantum hardware...")
K = kernel.compute_kernel_matrix(X)
print(f"Kernel matrix shape: {K.shape}")
print(f"Kernel matrix condition number: {np.linalg.cond(K):.2e}")
## Error Mitigation Strategies
### Measurement Error Mitigation
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
def setup_error_mitigation(backend, qubits):
"""Setup measurement error mitigation"""
# Create calibration circuits
cal_circuits, state_labels = complete_meas_cal(
qubit_list=qubits,
circlabel='cal'
)
# Execute calibration circuits
cal_job = backend.run(cal_circuits, shots=8192)
cal_results = cal_job.result()
# Create fitter
meas_fitter = CompleteMeasFitter(cal_results, state_labels)
return meas_fitter
# Setup error mitigation
qubits = [0, 1, 2, 3]
meas_filter = setup_error_mitigation(hardware_backend.backend, qubits)
# Apply error mitigation to results
def apply_error_mitigation(raw_counts, meas_filter):
"""Apply measurement error mitigation to results"""
mitigated_counts = meas_filter.filter.apply(raw_counts)
return mitigated_counts
### Zero-Noise Extrapolation
def zero_noise_extrapolation(embedding, X, noise_levels, shots=1024):
"""Perform zero-noise extrapolation"""
results = []
for noise_level in noise_levels:
# Create noisy backend
noisy_backend = create_noisy_backend(noise_level)
embedding.set_backend(noisy_backend)
# Compute metric with noise
kernel = FidelityKernel(embedding=embedding)
K = kernel.compute_kernel_matrix(X)
# Store result
results.append(np.trace(K))
# Extrapolate to zero noise
from scipy.optimize import curve_fit
def exponential_decay(x, a, b, c):
return a * np.exp(-b * x) + c
popt, _ = curve_fit(exponential_decay, noise_levels, results)
zero_noise_result = popt[0] + popt[2] # a + c
return zero_noise_result, results
## Cloud Platform Integration
### Amazon Braket Integration
from braket.aws import AwsDevice
from braket.devices import LocalSimulator
# Use local simulator for development
local_device = LocalSimulator()
# Use cloud simulator
sv1_device = AwsDevice("arn:aws:braket:::device/quantum-simulator/amazon/sv1")
# Use real quantum hardware (IonQ)
ionq_device = AwsDevice("arn:aws:braket:::device/qpu/ionq/ionQdevice")
# Create Braket backend wrapper
class BraketBackend:
def __init__(self, device, shots=1024):
self.device = device
self.shots = shots
def execute(self, circuit):
"""Execute circuit on Braket device"""
# Convert circuit to Braket format
braket_circuit = self.convert_to_braket(circuit)
# Submit task
task = self.device.run(braket_circuit, shots=self.shots)
# Get results
result = task.result()
return result.measurement_counts
def convert_to_braket(self, circuit):
"""Convert from Qiskit/PennyLane to Braket circuit"""
# Implementation depends on source circuit format
pass
### Google Cirq Integration
import cirq
from cirq.google import Foxtail
# Create Cirq device
device = Foxtail
# Define quantum embedding circuit in Cirq
def create_cirq_embedding(data, qubits):
"""Create embedding circuit in Cirq"""
circuit = cirq.Circuit()
for i, x in enumerate(data):
circuit.append(cirq.ry(x).on(qubits[i % len(qubits)]))
return circuit
# Execute on Google quantum hardware (when available)
# This requires access to Google Quantum AI
## Hardware-Specific Optimizations
### Connectivity-Aware Circuit Design
def optimize_for_connectivity(circuit, coupling_map):
"""Optimize circuit for hardware connectivity"""
from qiskit.compiler import transpile
# Transpile with hardware constraints
optimized_circuit = transpile(
circuit,
coupling_map=coupling_map,
optimization_level=3,
routing_method='sabre',
translation_method='synthesis'
)
return optimized_circuit
# Example: Optimize for IBM hardware
coupling_map = [[0, 1], [1, 0], [1, 2], [2, 1], [2, 3], [3, 2]]
optimized_circuit = optimize_for_connectivity(circuit, coupling_map)
### Native Gate Decomposition
def decompose_to_native_gates(circuit, basis_gates):
"""Decompose circuit to native hardware gates"""
from qiskit.compiler import transpile
transpiled = transpile(
circuit,
basis_gates=basis_gates,
optimization_level=2
)
return transpiled
# IBM native gates
ibm_basis = ['id', 'rz', 'sx', 'x', 'cx']
native_circuit = decompose_to_native_gates(circuit, ibm_basis)
## Performance Monitoring
### Quantum Volume Assessment
def assess_quantum_volume(backend, n_qubits):
"""Assess effective quantum volume of backend"""
from qiskit.ignis.verification.quantum_volume import qv_circuits, QVFitter
# Create quantum volume circuits
qv_circs, qv_circs_nomeas = qv_circuits(
qubit_lists=[[i for i in range(n_qubits)]],
ntrials=100
)
# Execute circuits
job = backend.run(qv_circs, shots=1024)
qv_result = job.result()
# Analyze results
qv_fitter = QVFitter()
qv_fitter.add_data(qv_result)
# Check if quantum volume is achieved
qv_success = qv_fitter.calc_statistics()
return qv_success
# Assess quantum volume
qv_result = assess_quantum_volume(hardware_backend.backend, 4)
print(f"Quantum Volume achieved: {qv_result}")
### Real-time Performance Tracking
class HardwarePerformanceTracker:
"""Track hardware performance metrics"""
def __init__(self):
self.metrics = {
'execution_times': [],
'error_rates': [],
'queue_times': [],
'timestamps': []
}
def track_execution(self, backend, circuit):
"""Track single execution performance"""
import time
start_time = time.time()
# Submit job
job = backend.run(circuit, shots=1024)
# Wait for completion and track queue time
queue_start = time.time()
result = job.result()
queue_time = time.time() - queue_start
execution_time = time.time() - start_time
# Estimate error rate from result fidelity
error_rate = self.estimate_error_rate(result)
# Record metrics
self.metrics['execution_times'].append(execution_time)
self.metrics['error_rates'].append(error_rate)
self.metrics['queue_times'].append(queue_time)
self.metrics['timestamps'].append(time.time())
def estimate_error_rate(self, result):
"""Estimate error rate from measurement results"""
# Simple heuristic based on result distribution
counts = result.get_counts()
total_shots = sum(counts.values())
# Expect some distribution - high concentration suggests errors
max_count = max(counts.values())
error_estimate = 1 - (max_count / total_shots)
return error_estimate
def generate_report(self):
"""Generate performance report"""
import matplotlib.pyplot as plt
fig, axes = plt.subplots(2, 2, figsize=(12, 8))
# Execution times
axes[0, 0].plot(self.metrics['timestamps'], self.metrics['execution_times'])
axes[0, 0].set_title('Execution Times')
axes[0, 0].set_ylabel('Time (s)')
# Error rates
axes[0, 1].plot(self.metrics['timestamps'], self.metrics['error_rates'])
axes[0, 1].set_title('Error Rates')
axes[0, 1].set_ylabel('Error Rate')
# Queue times
axes[1, 0].plot(self.metrics['timestamps'], self.metrics['queue_times'])
axes[1, 0].set_title('Queue Times')
axes[1, 0].set_ylabel('Time (s)')
# Summary statistics
axes[1, 1].text(0.1, 0.8, f"Avg Execution: {np.mean(self.metrics['execution_times']):.2f}s")
axes[1, 1].text(0.1, 0.6, f"Avg Error Rate: {np.mean(self.metrics['error_rates']):.3f}")
axes[1, 1].text(0.1, 0.4, f"Avg Queue Time: {np.mean(self.metrics['queue_times']):.2f}s")
axes[1, 1].set_title('Summary Statistics')
axes[1, 1].axis('off')
plt.tight_layout()
plt.show()
# Use performance tracker
tracker = HardwarePerformanceTracker()
# Track multiple executions
for _ in range(10):
tracker.track_execution(hardware_backend.backend, test_circuit)
# Generate report
tracker.generate_report()
## Best Practices for Hardware Execution
### 1. Circuit Optimization
## - Minimize circuit depth
## - Use native gates when possible
## - Apply connectivity-aware routing
### 2. Error Mitigation
## - Implement measurement error correction
## - Use zero-noise extrapolation for critical computations
## - Consider readout error mitigation
### 3. Resource Management
##- Monitor queue times and job status
## - Batch multiple circuits when possible
## Use appropriate shot counts for statistical accuracy
### 4. Cost Optimization
## - Test on simulators before hardware execution
## - Use hardware credits efficiently
## - Monitor usage and billing
## Troubleshooting Common Issues
### Authentication Problems
# Clear and reset IBM Quantum account
IBMQ.delete_account()
IBMQ.save_account('NEW_API_TOKEN')
IBMQ.load_account()
### Circuit Compilation Errors
# Check circuit compatibility
def check_circuit_compatibility(circuit, backend):
"""Check if circuit is compatible with backend"""
config = backend.configuration()
# Check qubit count
if circuit.num_qubits > config.n_qubits:
print(f"Error: Circuit requires {circuit.num_qubits} qubits, backend has {config.n_qubits}")
return False
# Check gate compatibility
circuit_gates = set(circuit.count_ops().keys())
backend_gates = set(config.basis_gates)
if not circuit_gates.issubset(backend_gates):
unsupported = circuit_gates - backend_gates
print(f"Warning: Unsupported gates: {unsupported}")
return True
# Check compatibility before execution
if check_circuit_compatibility(circuit, hardware_backend.backend):
result = hardware_backend.execute(circuit)
## Next Steps
###- Explore advanced error mitigation techniques
### - Implement custom calibration protocols
### - Develop hardware-aware algorithm design
### - Scale to larger quantum systems
## Further Reading
#@# - [IBM Quantum Documentation](https://qiskit.org/documentation/)
### - [Amazon Braket Documentation](https://docs.aws.amazon.com/braket/)
### - [Quantum Error Correction](https://arxiv.org/abs/quant-ph/0504218)