Kernels API
This page documents the quantum kernel classes and functions.
Base Classes
BaseKernel
BaseKernel(embedding, backend)
Bases: ABC
Abstract base class for quantum kernels.
Quantum kernels compute similarity between data points by comparing the quantum states generated by embedding the data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
embedding
|
BaseEmbedding
|
Quantum embedding to use for feature mapping |
required |
backend
|
BaseBackend
|
Backend for quantum circuit execution |
required |
Source code in quantum_data_embedding_suite\kernels\base.py
Functions
add_regularization(K, reg_param=1e-08)
Add regularization to kernel matrix.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
K
|
array - like
|
Kernel matrix |
required |
reg_param
|
float
|
Regularization parameter |
1e-8
|
Returns:
Name | Type | Description |
---|---|---|
K_reg |
ndarray
|
Regularized kernel matrix |
Source code in quantum_data_embedding_suite\kernels\base.py
compute_effective_dimension(K, threshold=0.95)
Compute effective dimension of the kernel matrix.
The effective dimension is the number of eigenvalues needed to capture a certain fraction of the total variance.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
K
|
array - like
|
Kernel matrix |
required |
threshold
|
float
|
Variance threshold (between 0 and 1) |
0.95
|
Returns:
Name | Type | Description |
---|---|---|
eff_dim |
int
|
Effective dimension |
Source code in quantum_data_embedding_suite\kernels\base.py
compute_kernel_alignment(K1, K2)
Compute kernel alignment between two kernel matrices.
Kernel alignment measures the similarity between two kernels:
A(K1, K2) =
Parameters:
Name | Type | Description | Default |
---|---|---|---|
K1
|
array - like
|
Kernel matrices to compare |
required |
K2
|
array - like
|
Kernel matrices to compare |
required |
Returns:
Name | Type | Description |
---|---|---|
alignment |
float
|
Kernel alignment score between 0 and 1 |
Source code in quantum_data_embedding_suite\kernels\base.py
compute_kernel_element(x1, x2)
abstractmethod
Compute kernel element K(x1, x2) between two data points.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x1
|
array - like
|
Data points to compute kernel between |
required |
x2
|
array - like
|
Data points to compute kernel between |
required |
Returns:
Name | Type | Description |
---|---|---|
kernel_value |
float
|
Kernel value between x1 and x2 |
Source code in quantum_data_embedding_suite\kernels\base.py
compute_kernel_matrix(X, Y=None)
Compute kernel matrix between sets of data points.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
array-like of shape (n_samples_X, n_features)
|
First set of data points |
required |
Y
|
array-like of shape (n_samples_Y, n_features)
|
Second set of data points (defaults to X) |
None
|
Returns:
Name | Type | Description |
---|---|---|
K |
ndarray of shape (n_samples_X, n_samples_Y)
|
Kernel matrix |
Source code in quantum_data_embedding_suite\kernels\base.py
compute_kernel_matrix_symmetric(X)
Compute symmetric kernel matrix for a single dataset.
This method can be more efficient than compute_kernel_matrix when computing K(X, X) due to symmetry.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
array-like of shape (n_samples, n_features)
|
Data points |
required |
Returns:
Name | Type | Description |
---|---|---|
K |
ndarray of shape (n_samples, n_samples)
|
Symmetric kernel matrix |
Source code in quantum_data_embedding_suite\kernels\base.py
is_positive_definite(K, tol=1e-08)
Check if kernel matrix is positive definite.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
K
|
array - like
|
Kernel matrix |
required |
tol
|
float
|
Tolerance for eigenvalue check |
1e-8
|
Returns:
Name | Type | Description |
---|---|---|
is_pd |
bool
|
Whether the matrix is positive definite |
Source code in quantum_data_embedding_suite\kernels\base.py
normalize_kernel(K)
Normalize kernel matrix to have unit diagonal.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
K
|
array - like
|
Kernel matrix |
required |
Returns:
Name | Type | Description |
---|---|---|
K_norm |
ndarray
|
Normalized kernel matrix |
Source code in quantum_data_embedding_suite\kernels\base.py
Kernel Implementations
FidelityKernel
FidelityKernel(embedding, backend, cache_circuits=True)
Bases: BaseKernel
Fidelity-based quantum kernel.
Computes kernel values based on the fidelity (overlap) between quantum states: K(x1, x2) = |⟨ψ(x1)|ψ(x2)⟩|²
This is the most common type of quantum kernel and measures the squared overlap between the quantum states obtained by embedding the classical data points.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
embedding
|
BaseEmbedding
|
Quantum embedding to use for feature mapping |
required |
backend
|
BaseBackend
|
Backend for quantum circuit execution |
required |
cache_circuits
|
bool
|
Whether to cache quantum circuits for repeated evaluations |
True
|
Examples:
>>> from quantum_data_embedding_suite.embeddings import AngleEmbedding
>>> from quantum_data_embedding_suite.backends import QiskitBackend
>>> backend = QiskitBackend()
>>> embedding = AngleEmbedding(n_qubits=4, backend=backend)
>>> kernel = FidelityKernel(embedding, backend)
>>> fidelity = kernel.compute_kernel_element([0.1, 0.2], [0.3, 0.4])
Source code in quantum_data_embedding_suite\kernels\fidelity.py
Functions
analyze_kernel_properties(K)
Analyze properties of the fidelity kernel matrix.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
K
|
array - like
|
Fidelity kernel matrix |
required |
Returns:
Name | Type | Description |
---|---|---|
properties |
dict
|
Dictionary containing kernel analysis results |
Source code in quantum_data_embedding_suite\kernels\fidelity.py
clear_cache()
compute_gram_schmidt_fidelities(X, reference_idx=0)
Compute fidelities with respect to a reference state.
This can be useful for analyzing the embedding quality and understanding how the quantum states relate to a reference point.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
array-like of shape (n_samples, n_features)
|
Data points |
required |
reference_idx
|
int
|
Index of the reference data point |
0
|
Returns:
Name | Type | Description |
---|---|---|
fidelities |
ndarray of shape (n_samples,)
|
Fidelity values with respect to reference |
Source code in quantum_data_embedding_suite\kernels\fidelity.py
compute_kernel_element(x1, x2)
Compute fidelity kernel element between two data points.
The fidelity kernel is defined as: K(x1, x2) = |⟨ψ(x1)|ψ(x2)⟩|²
where |ψ(xi)⟩ is the quantum state obtained by applying the embedding circuit to data point xi.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x1
|
array - like
|
Data points to compute kernel between |
required |
x2
|
array - like
|
Data points to compute kernel between |
required |
Returns:
Name | Type | Description |
---|---|---|
fidelity |
float
|
Fidelity kernel value between 0 and 1 |
Source code in quantum_data_embedding_suite\kernels\fidelity.py
compute_kernel_matrix_optimized(X)
Optimized computation of symmetric kernel matrix.
This method takes advantage of symmetry and diagonal properties to reduce the number of fidelity computations needed.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
array-like of shape (n_samples, n_features)
|
Data points |
required |
Returns:
Name | Type | Description |
---|---|---|
K |
ndarray of shape (n_samples, n_samples)
|
Fidelity kernel matrix |
Source code in quantum_data_embedding_suite\kernels\fidelity.py
get_cache_size()
Get the current size of the circuit cache.
ProjectedKernel
ProjectedKernel(embedding, backend, observable='Z', qubits=None)
Bases: BaseKernel
Projected quantum kernel that measures specific observables.
Instead of computing full state fidelity, this kernel computes expectation values of specific observables on the quantum states, providing a different notion of similarity.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
embedding
|
BaseEmbedding
|
Quantum embedding to use for feature mapping |
required |
backend
|
BaseBackend
|
Backend for quantum circuit execution |
required |
observable
|
str or object
|
Observable to measure ('Z', 'X', 'Y', or custom observable) |
'Z'
|
qubits
|
list of int
|
Qubits to measure (defaults to all qubits) |
None
|
Source code in quantum_data_embedding_suite\kernels\projected.py
Functions
compute_kernel_element(x1, x2)
Compute projected kernel element between two data points.
The projected kernel is defined as: K(x1, x2) = ⟨ψ(x1)|O|ψ(x1)⟩ * ⟨ψ(x2)|O|ψ(x2)⟩
where O is the observable and |ψ(xi)⟩ are the embedded states.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x1
|
array - like
|
Data points to compute kernel between |
required |
x2
|
array - like
|
Data points to compute kernel between |
required |
Returns:
Name | Type | Description |
---|---|---|
kernel_value |
float
|
Projected kernel value |
Source code in quantum_data_embedding_suite\kernels\projected.py
TrainableKernel
TrainableKernel(embedding, backend, n_params=4, param_bounds=(-np.pi, np.pi))
Bases: BaseKernel
Trainable quantum kernel with learnable parameters.
This kernel includes additional trainable parameters that can be optimized to improve the kernel's performance for specific tasks.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
embedding
|
BaseEmbedding
|
Quantum embedding to use for feature mapping |
required |
backend
|
BaseBackend
|
Backend for quantum circuit execution |
required |
n_params
|
int
|
Number of trainable parameters |
4
|
param_bounds
|
tuple
|
Bounds for parameter initialization |
(-pi, pi)
|
Source code in quantum_data_embedding_suite\kernels\trainable.py
Functions
compute_kernel_element(x1, x2)
Compute trainable kernel element between two data points.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x1
|
array - like
|
Data points to compute kernel between |
required |
x2
|
array - like
|
Data points to compute kernel between |
required |
Returns:
Name | Type | Description |
---|---|---|
kernel_value |
float
|
Trainable kernel value |
Source code in quantum_data_embedding_suite\kernels\trainable.py
get_parameters()
Get current trainable parameters.
Returns:
Name | Type | Description |
---|---|---|
theta |
ndarray
|
Current parameter values |
update_parameters(new_theta)
Update trainable parameters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
new_theta
|
array - like
|
New parameter values |
required |
Source code in quantum_data_embedding_suite\kernels\trainable.py
Usage Examples
Basic Kernel Creation
from quantum_data_embedding_suite.kernels import FidelityKernel
from quantum_data_embedding_suite.embeddings import AngleEmbedding
import numpy as np
# Create embedding and kernel
embedding = AngleEmbedding(n_qubits=4)
kernel = FidelityKernel(embedding, backend="qiskit")
# Compute kernel matrix
X = np.random.randn(50, 4)
K = kernel.compute_kernel(X)
print(f"Kernel matrix shape: {K.shape}")
print(f"Kernel is symmetric: {np.allclose(K, K.T)}")
print(f"Diagonal elements (should be ~1): {np.diag(K)[:5]}")
Kernel Comparison
from quantum_data_embedding_suite.kernels import (
FidelityKernel, ProjectedKernel, TrainableKernel
)
from sklearn.metrics.pairwise import rbf_kernel
# Create different quantum kernels
embedding = AngleEmbedding(n_qubits=4)
kernels = {
'fidelity': FidelityKernel(embedding),
'projected': ProjectedKernel(embedding, n_measurements=100),
'trainable': TrainableKernel(embedding, n_parameters=20)
}
# Compare with classical kernel
X = np.random.randn(30, 4)
K_classical = rbf_kernel(X)
results = {}
for name, kernel in kernels.items():
K_quantum = kernel.compute_kernel(X)
# Compute kernel alignment with classical kernel
alignment = np.sum(K_quantum * K_classical) / (
np.linalg.norm(K_quantum) * np.linalg.norm(K_classical)
)
results[name] = {
'trace': np.trace(K_quantum),
'frobenius_norm': np.linalg.norm(K_quantum),
'classical_alignment': alignment
}
for name, metrics in results.items():
print(f"{name.upper()} Kernel:")
for metric, value in metrics.items():
print(f" {metric}: {value:.4f}")
print()
Custom Kernel Creation
from quantum_data_embedding_suite.kernels import BaseKernel
class CustomKernel(BaseKernel):
"""Custom kernel implementation"""
def __init__(self, embedding, alpha=1.0, beta=0.5):
super().__init__(embedding)
self.alpha = alpha
self.beta = beta
def _compute_element(self, x_i, x_j):
"""Compute kernel element K(x_i, x_j)"""
# Create quantum circuits
circuit_i = self.embedding.embed(x_i)
circuit_j = self.embedding.embed(x_j)
# Compute fidelity
fidelity = self._compute_fidelity(circuit_i, circuit_j)
# Apply custom transformation
kernel_value = self.alpha * fidelity**self.beta
return kernel_value
def _compute_fidelity(self, circuit_i, circuit_j):
"""Compute fidelity between two circuits"""
# Implement fidelity computation
# This is a simplified version
from quantum_data_embedding_suite.backends import QiskitBackend
backend = QiskitBackend(device="statevector_simulator")
state_i = backend.get_statevector(circuit_i)
state_j = backend.get_statevector(circuit_j)
fidelity = np.abs(np.vdot(state_i, state_j))**2
return fidelity
# Use custom kernel
custom_kernel = CustomKernel(embedding, alpha=2.0, beta=0.8)
K_custom = custom_kernel.compute_kernel(X[:10]) # Small subset for testing
Advanced Usage
Trainable Kernels
from quantum_data_embedding_suite.kernels import TrainableKernel
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
# Create trainable kernel
trainable_kernel = TrainableKernel(
embedding=embedding,
n_parameters=15,
optimization_method="adam",
learning_rate=0.01
)
# Prepare data
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=42
)
# Train the kernel
print("Training kernel...")
trainable_kernel.fit(
X_train, y_train,
epochs=50,
validation_split=0.2,
verbose=True
)
# Use trained kernel for classification
K_train = trainable_kernel.compute_kernel(X_train)
K_test = trainable_kernel.compute_kernel(X_test, X_train)
svm = SVC(kernel='precomputed')
svm.fit(K_train, y_train)
train_accuracy = svm.score(K_train, y_train)
test_accuracy = svm.score(K_test, y_test)
print(f"Training accuracy: {train_accuracy:.4f}")
print(f"Test accuracy: {test_accuracy:.4f}")
Kernel Optimization
from quantum_data_embedding_suite.optimization import optimize_kernel
# Define objective function
def objective_function(kernel, X, y):
"""Objective function for kernel optimization"""
K = kernel.compute_kernel(X)
# Use cross-validation accuracy as objective
from sklearn.model_selection import cross_val_score
svm = SVC(kernel='precomputed')
scores = cross_val_score(svm, K, y, cv=5)
return scores.mean()
# Optimize kernel parameters
best_kernel = optimize_kernel(
kernel_class=TrainableKernel,
embedding=embedding,
X_train=X_train,
y_train=y_train,
objective_function=objective_function,
n_trials=50,
optimization_method="bayesian"
)
print("Optimal kernel parameters found")
Batch Kernel Computation
def compute_kernel_batch(kernel, X, batch_size=100):
"""Compute kernel matrix in batches to manage memory"""
n_samples = len(X)
K = np.zeros((n_samples, n_samples))
for i in range(0, n_samples, batch_size):
for j in range(0, n_samples, batch_size):
i_end = min(i + batch_size, n_samples)
j_end = min(j + batch_size, n_samples)
X_batch_i = X[i:i_end]
X_batch_j = X[j:j_end]
K_batch = kernel.compute_kernel(X_batch_i, X_batch_j)
K[i:i_end, j:j_end] = K_batch
print(f"Computed batch ({i}:{i_end}, {j}:{j_end})")
return K
# Use batch computation for large datasets
large_X = np.random.randn(1000, 4)
K_large = compute_kernel_batch(kernel, large_X, batch_size=200)
Kernel Analysis
Kernel Properties
def analyze_kernel_properties(K):
"""Analyze properties of a kernel matrix"""
n = K.shape[0]
# Basic properties
is_symmetric = np.allclose(K, K.T)
is_psd = np.all(np.linalg.eigvals(K) >= -1e-10)
# Eigenvalue analysis
eigenvals = np.linalg.eigvals(K)
eigenvals = np.real(eigenvals[eigenvals.argsort()[::-1]])
# Effective rank
eigenval_sum = np.sum(eigenvals)
normalized_eigenvals = eigenvals / eigenval_sum
effective_rank = 1.0 / np.sum(normalized_eigenvals**2)
# Condition number
condition_number = eigenvals[0] / eigenvals[-1] if eigenvals[-1] > 1e-12 else np.inf
# Kernel alignment with identity
identity_alignment = np.trace(K) / np.linalg.norm(K) / np.sqrt(n)
return {
'is_symmetric': is_symmetric,
'is_positive_semidefinite': is_psd,
'rank': np.linalg.matrix_rank(K),
'effective_rank': effective_rank,
'condition_number': condition_number,
'trace': np.trace(K),
'frobenius_norm': np.linalg.norm(K),
'largest_eigenvalue': eigenvals[0],
'smallest_eigenvalue': eigenvals[-1],
'identity_alignment': identity_alignment,
'eigenvalue_decay': eigenvals[:min(10, len(eigenvals))]
}
# Analyze kernel
K = kernel.compute_kernel(X[:50])
properties = analyze_kernel_properties(K)
print("Kernel Properties:")
for prop, value in properties.items():
if isinstance(value, np.ndarray):
print(f"{prop}: {value}")
elif isinstance(value, float):
print(f"{prop}: {value:.6f}")
else:
print(f"{prop}: {value}")
Kernel Visualization
import matplotlib.pyplot as plt
import seaborn as sns
def visualize_kernel(K, labels=None, title="Kernel Matrix"):
"""Visualize kernel matrix"""
fig, axes = plt.subplots(2, 2, figsize=(12, 10))
# Kernel matrix heatmap
sns.heatmap(K, ax=axes[0,0], cmap='viridis', cbar=True)
axes[0,0].set_title(f"{title} - Heatmap")
# Eigenvalue spectrum
eigenvals = np.linalg.eigvals(K)
eigenvals = np.real(eigenvals[eigenvals.argsort()[::-1]])
axes[0,1].plot(eigenvals, 'o-')
axes[0,1].set_title("Eigenvalue Spectrum")
axes[0,1].set_xlabel("Index")
axes[0,1].set_ylabel("Eigenvalue")
axes[0,1].set_yscale('log')
# Kernel values distribution
K_upper = K[np.triu_indices_from(K, k=1)]
axes[1,0].hist(K_upper, bins=30, alpha=0.7)
axes[1,0].set_title("Off-diagonal Elements Distribution")
axes[1,0].set_xlabel("Kernel Value")
axes[1,0].set_ylabel("Frequency")
# Diagonal elements
diag_elements = np.diag(K)
axes[1,1].hist(diag_elements, bins=20, alpha=0.7)
axes[1,1].set_title("Diagonal Elements Distribution")
axes[1,1].set_xlabel("Kernel Value")
axes[1,1].set_ylabel("Frequency")
plt.tight_layout()
plt.show()
# Visualize kernel
visualize_kernel(K, title="Quantum Fidelity Kernel")
Performance Optimization
Parallel Kernel Computation
from multiprocessing import Pool
import functools
def compute_kernel_parallel(kernel, X, n_jobs=4):
"""Compute kernel matrix using parallel processing"""
n_samples = len(X)
def compute_row(i):
"""Compute one row of the kernel matrix"""
row = np.zeros(n_samples)
for j in range(n_samples):
if j <= i: # Exploit symmetry
row[j] = kernel._compute_element(X[i], X[j])
return i, row
# Compute upper triangle in parallel
with Pool(n_jobs) as pool:
results = pool.map(compute_row, range(n_samples))
# Construct full matrix
K = np.zeros((n_samples, n_samples))
for i, row in results:
K[i, :] = row
# Fill lower triangle using symmetry
K = K + K.T - np.diag(np.diag(K))
return K
# Use parallel computation
K_parallel = compute_kernel_parallel(kernel, X[:20], n_jobs=2)
Approximate Kernels
class ApproximateKernel:
"""Approximate kernel using random sampling"""
def __init__(self, base_kernel, n_samples=100):
self.base_kernel = base_kernel
self.n_samples = n_samples
def compute_kernel(self, X, Y=None):
"""Compute approximate kernel using random sampling"""
if Y is None:
Y = X
n_x, n_y = len(X), len(Y)
# Sample random pairs for approximation
n_total_pairs = n_x * n_y
n_sample_pairs = min(self.n_samples, n_total_pairs)
# Generate random indices
i_indices = np.random.randint(0, n_x, n_sample_pairs)
j_indices = np.random.randint(0, n_y, n_sample_pairs)
# Compute sampled kernel values
K_approx = np.zeros((n_x, n_y))
sample_count = np.zeros((n_x, n_y))
for i, j in zip(i_indices, j_indices):
k_val = self.base_kernel._compute_element(X[i], Y[j])
K_approx[i, j] += k_val
sample_count[i, j] += 1
# Average multiple samples
K_approx = np.divide(K_approx, sample_count,
out=np.zeros_like(K_approx),
where=sample_count!=0)
# Fill missing values with mean
mean_val = np.mean(K_approx[K_approx > 0])
K_approx[sample_count == 0] = mean_val
return K_approx
# Use approximate kernel
approx_kernel = ApproximateKernel(kernel, n_samples=500)
K_approx = approx_kernel.compute_kernel(X[:100])
Integration with Machine Learning
Scikit-learn Integration
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.pipeline import Pipeline
class QuantumKernelTransformer(BaseEstimator, TransformerMixin):
"""Scikit-learn transformer for quantum kernels"""
def __init__(self, quantum_kernel):
self.quantum_kernel = quantum_kernel
def fit(self, X, y=None):
"""Fit the transformer"""
self.X_train_ = X.copy()
return self
def transform(self, X):
"""Transform data to kernel space"""
if not hasattr(self, 'X_train_'):
raise ValueError("Transformer not fitted")
# Compute kernel between X and training data
K = self.quantum_kernel.compute_kernel(X, self.X_train_)
return K
def fit_transform(self, X, y=None):
"""Fit and transform"""
self.fit(X, y)
# For training data, compute full kernel matrix
K = self.quantum_kernel.compute_kernel(X)
return K
# Use in scikit-learn pipeline
pipeline = Pipeline([
('quantum_kernel', QuantumKernelTransformer(kernel)),
('svm', SVC(kernel='precomputed'))
])
# Train pipeline
pipeline.fit(X_train, y_train)
# Predict
predictions = pipeline.predict(X_test)
Custom Kernel for SVM
def create_sklearn_kernel(quantum_kernel):
"""Create sklearn-compatible kernel function"""
def sklearn_kernel(X, Y=None):
"""Kernel function for sklearn"""
if Y is None:
# Training phase - compute full kernel matrix
return quantum_kernel.compute_kernel(X)
else:
# Prediction phase - compute cross-kernel
return quantum_kernel.compute_kernel(X, Y)
return sklearn_kernel
# Use with sklearn SVM
from sklearn.svm import SVC
sklearn_kernel_func = create_sklearn_kernel(kernel)
svm = SVC(kernel=sklearn_kernel_func)
# Note: This approach has limitations with sklearn's kernel caching
# It's better to use precomputed kernels for quantum kernels
Error Handling and Debugging
Kernel Validation
def validate_kernel(K, tolerance=1e-10):
"""Validate kernel matrix properties"""
errors = []
warnings = []
# Check if matrix is square
if K.shape[0] != K.shape[1]:
errors.append("Kernel matrix is not square")
return errors, warnings
n = K.shape[0]
# Check symmetry
if not np.allclose(K, K.T, atol=tolerance):
errors.append("Kernel matrix is not symmetric")
# Check positive semidefiniteness
eigenvals = np.linalg.eigvals(K)
min_eigenval = np.min(np.real(eigenvals))
if min_eigenval < -tolerance:
errors.append(f"Kernel matrix is not PSD (min eigenvalue: {min_eigenval})")
# Check diagonal elements
diag_elements = np.diag(K)
if np.any(diag_elements < 0):
warnings.append("Some diagonal elements are negative")
if np.any(diag_elements > 1 + tolerance):
warnings.append("Some diagonal elements are > 1 (unusual for normalized kernels)")
# Check for NaN or Inf values
if np.any(np.isnan(K)):
errors.append("Kernel matrix contains NaN values")
if np.any(np.isinf(K)):
errors.append("Kernel matrix contains infinite values")
# Check condition number
condition_num = np.linalg.cond(K)
if condition_num > 1e12:
warnings.append(f"Kernel matrix is ill-conditioned (cond={condition_num:.2e})")
return errors, warnings
# Validate kernel matrix
errors, warnings = validate_kernel(K)
if errors:
print("Kernel validation errors:")
for error in errors:
print(f" - {error}")
if warnings:
print("Kernel validation warnings:")
for warning in warnings:
print(f" - {warning}")
if not errors and not warnings:
print("Kernel matrix is valid")
Debugging Tools
def debug_kernel_computation(kernel, X, verbose=True):
"""Debug kernel computation step by step"""
if verbose:
print(f"Debugging kernel: {type(kernel).__name__}")
print(f"Embedding: {type(kernel.embedding).__name__}")
print(f"Data shape: {X.shape}")
# Test single element computation
try:
if len(X) >= 2:
k_val = kernel._compute_element(X[0], X[1])
if verbose:
print(f"Sample kernel value K(x_0, x_1): {k_val}")
# Test diagonal element
k_diag = kernel._compute_element(X[0], X[0])
if verbose:
print(f"Diagonal element K(x_0, x_0): {k_diag}")
# Test small kernel matrix
if len(X) >= 3:
K_small = kernel.compute_kernel(X[:3])
if verbose:
print(f"Small kernel matrix (3x3):")
print(K_small)
# Validate small matrix
errors, warnings = validate_kernel(K_small)
if errors:
print(f"Errors in small kernel: {errors}")
if warnings:
print(f"Warnings in small kernel: {warnings}")
except Exception as e:
print(f"Error during kernel computation: {e}")
import traceback
traceback.print_exc()
return False
return True
# Debug kernel
debug_success = debug_kernel_computation(kernel, X)
Best Practices
Kernel Selection Guidelines
def recommend_kernel(data_characteristics, problem_type):
"""Recommend kernel based on data and problem characteristics"""
n_samples, n_features = data_characteristics['n_samples'], data_characteristics['n_features']
noise_level = data_characteristics.get('noise_level', 'medium')
computational_budget = data_characteristics.get('computational_budget', 'medium')
recommendations = []
# Data size considerations
if n_samples < 100:
recommendations.append("Consider FidelityKernel for small datasets")
elif n_samples > 1000:
recommendations.append("Consider ProjectedKernel or approximate methods for large datasets")
# Noise considerations
if noise_level == 'high':
recommendations.append("ProjectedKernel may be more robust to noise")
else:
recommendations.append("FidelityKernel provides better accuracy for low-noise data")
# Computational budget
if computational_budget == 'low':
recommendations.append("Use ProjectedKernel with fewer measurements")
elif computational_budget == 'high':
recommendations.append("Consider TrainableKernel for optimal performance")
# Problem type
if problem_type == 'classification':
recommendations.append("All kernel types suitable for classification")
elif problem_type == 'regression':
recommendations.append("FidelityKernel often works well for regression")
return recommendations
# Get recommendations
data_chars = {
'n_samples': 500,
'n_features': 8,
'noise_level': 'medium',
'computational_budget': 'high'
}
recommendations = recommend_kernel(data_chars, 'classification')
print("Kernel recommendations:")
for rec in recommendations:
print(f" - {rec}")