Backends API
This page documents the quantum computing backend implementations and utilities.
Backend Base Classes
BaseBackend
BaseBackend(device=None, shots=1024, **kwargs)
Bases: ABC
Abstract base class for quantum computing backends.
All backend implementations should inherit from this class and implement the required abstract methods.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
device
|
str
|
Specific device/simulator to use |
None
|
shots
|
int
|
Number of measurement shots |
1024
|
Source code in quantum_data_embedding_suite\backends\base.py
Attributes
name
abstractmethod
property
Get the backend name.
Functions
compute_expectation(circuit, observable)
abstractmethod
Compute expectation value of an observable.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
circuit
|
quantum circuit object
|
Backend-specific quantum circuit |
required |
observable
|
observable object
|
Backend-specific observable |
required |
Returns:
Name | Type | Description |
---|---|---|
expectation |
float
|
Expectation value |
Source code in quantum_data_embedding_suite\backends\base.py
compute_fidelity(circuit1, circuit2)
Compute fidelity between two quantum circuits.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
circuit1
|
quantum circuit objects
|
Backend-specific quantum circuits |
required |
circuit2
|
quantum circuit objects
|
Backend-specific quantum circuits |
required |
Returns:
Name | Type | Description |
---|---|---|
fidelity |
float
|
Fidelity between the two circuits |
Source code in quantum_data_embedding_suite\backends\base.py
compute_trace_distance(circuit1, circuit2)
Compute trace distance between two quantum circuits.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
circuit1
|
quantum circuit objects
|
Backend-specific quantum circuits |
required |
circuit2
|
quantum circuit objects
|
Backend-specific quantum circuits |
required |
Returns:
Name | Type | Description |
---|---|---|
trace_distance |
float
|
Trace distance between the two circuits |
Source code in quantum_data_embedding_suite\backends\base.py
create_observable(pauli_string, qubits)
abstractmethod
Create an observable from a Pauli string.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pauli_string
|
str
|
Pauli string (e.g., 'XYZ', 'ZZI') |
required |
qubits
|
list of int
|
Qubits to apply the observable to |
required |
Returns:
Name | Type | Description |
---|---|---|
observable |
backend-specific observable object
|
|
Source code in quantum_data_embedding_suite\backends\base.py
ensure_initialized()
execute_circuit(circuit, shots=None)
abstractmethod
Execute a quantum circuit.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
circuit
|
quantum circuit object
|
Backend-specific quantum circuit |
required |
shots
|
int
|
Number of shots (overrides default if provided) |
None
|
Returns:
Name | Type | Description |
---|---|---|
result |
dict
|
Execution results containing counts, probabilities, etc. |
Source code in quantum_data_embedding_suite\backends\base.py
get_info()
Get information about the backend.
Returns:
Name | Type | Description |
---|---|---|
info |
dict
|
Dictionary containing backend information |
Source code in quantum_data_embedding_suite\backends\base.py
get_statevector(circuit)
abstractmethod
Get the statevector from a quantum circuit.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
circuit
|
quantum circuit object
|
Backend-specific quantum circuit |
required |
Returns:
Name | Type | Description |
---|---|---|
statevector |
ndarray
|
Complex amplitudes of the quantum state |
Source code in quantum_data_embedding_suite\backends\base.py
Qiskit Backend
QiskitBackend
QiskitBackend(device=None, shots=1024, optimization_level=1, **kwargs)
Bases: BaseBackend
Qiskit backend for quantum circuit execution.
Supports various Qiskit simulators and real quantum devices.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
device
|
str
|
Qiskit device name (e.g., 'qasm_simulator', 'statevector_simulator', 'ibmq_qasm_simulator') |
None
|
shots
|
int
|
Number of measurement shots |
1024
|
optimization_level
|
int
|
Qiskit transpiler optimization level (0-3) |
1
|
**kwargs
|
Additional Qiskit-specific parameters |
{}
|
Source code in quantum_data_embedding_suite\backends\qiskit_backend.py
Attributes
name
property
Get the backend name.
Functions
compute_expectation(circuit, observable)
Compute expectation value of an observable.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
circuit
|
QuantumCircuit
|
Qiskit quantum circuit |
required |
observable
|
SparsePauliOp or similar
|
Qiskit observable |
required |
Returns:
Name | Type | Description |
---|---|---|
expectation |
float
|
Expectation value |
Source code in quantum_data_embedding_suite\backends\qiskit_backend.py
create_observable(pauli_string, qubits)
Create a Qiskit observable from a Pauli string.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pauli_string
|
str
|
Pauli string (e.g., 'XYZ', 'ZZI') |
required |
qubits
|
list of int
|
Qubits to apply the observable to |
required |
Returns:
Name | Type | Description |
---|---|---|
observable |
SparsePauliOp
|
Qiskit observable object |
Source code in quantum_data_embedding_suite\backends\qiskit_backend.py
execute_circuit(circuit, shots=None)
Execute a quantum circuit using Qiskit.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
circuit
|
QuantumCircuit
|
Qiskit quantum circuit |
required |
shots
|
int
|
Number of shots (overrides default if provided) |
None
|
Returns:
Name | Type | Description |
---|---|---|
result |
dict
|
Execution results containing counts, probabilities, etc. |
Source code in quantum_data_embedding_suite\backends\qiskit_backend.py
get_device_properties()
Get properties of the current device.
Returns:
Name | Type | Description |
---|---|---|
properties |
dict
|
Device properties and capabilities |
Source code in quantum_data_embedding_suite\backends\qiskit_backend.py
get_statevector(circuit)
Get the statevector from a quantum circuit.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
circuit
|
QuantumCircuit
|
Qiskit quantum circuit |
required |
Returns:
Name | Type | Description |
---|---|---|
statevector |
ndarray
|
Complex amplitudes of the quantum state |
Source code in quantum_data_embedding_suite\backends\qiskit_backend.py
initialize()
Initialize the Qiskit backend.
Source code in quantum_data_embedding_suite\backends\qiskit_backend.py
PennyLane Backend
PennyLaneBackend
PennyLaneBackend(device=None, shots=1024, **kwargs)
Bases: BaseBackend
PennyLane backend for quantum circuit execution.
Supports various PennyLane devices including simulators and hardware.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
device
|
str
|
PennyLane device name (e.g., 'default.qubit', 'qiskit.aer', 'cirq.simulator') |
None
|
shots
|
int
|
Number of measurement shots |
1024
|
**kwargs
|
Additional PennyLane-specific parameters |
{}
|
Source code in quantum_data_embedding_suite\backends\pennylane_backend.py
Attributes
name
property
Get the backend name.
Functions
compute_expectation(circuit, observable)
Compute expectation value of an observable.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
circuit
|
callable
|
PennyLane quantum function |
required |
observable
|
Hamiltonian or Observable
|
PennyLane observable |
required |
Returns:
Name | Type | Description |
---|---|---|
expectation |
float
|
Expectation value |
Source code in quantum_data_embedding_suite\backends\pennylane_backend.py
create_observable(pauli_string, qubits)
Create a PennyLane observable from a Pauli string.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pauli_string
|
str
|
Pauli string (e.g., 'XYZ', 'ZZI') |
required |
qubits
|
list of int
|
Qubits to apply the observable to |
required |
Returns:
Name | Type | Description |
---|---|---|
observable |
Hamiltonian
|
PennyLane observable object |
Source code in quantum_data_embedding_suite\backends\pennylane_backend.py
create_qnode(circuit, interface='numpy')
Create a PennyLane QNode.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
circuit
|
callable
|
PennyLane quantum function |
required |
interface
|
str
|
Differentiation interface |
'numpy'
|
Returns:
Name | Type | Description |
---|---|---|
qnode |
QNode
|
PennyLane QNode object |
Source code in quantum_data_embedding_suite\backends\pennylane_backend.py
execute_circuit(circuit, shots=None)
Execute a quantum circuit using PennyLane.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
circuit
|
callable
|
PennyLane quantum function |
required |
shots
|
int
|
Number of shots (overrides default if provided) |
None
|
Returns:
Name | Type | Description |
---|---|---|
result |
dict
|
Execution results containing probabilities, samples, etc. |
Source code in quantum_data_embedding_suite\backends\pennylane_backend.py
get_device_properties()
Get properties of the current device.
Returns:
Name | Type | Description |
---|---|---|
properties |
dict
|
Device properties and capabilities |
Source code in quantum_data_embedding_suite\backends\pennylane_backend.py
get_statevector(circuit)
Get the statevector from a quantum circuit.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
circuit
|
callable
|
PennyLane quantum function |
required |
Returns:
Name | Type | Description |
---|---|---|
statevector |
ndarray
|
Complex amplitudes of the quantum state |
Source code in quantum_data_embedding_suite\backends\pennylane_backend.py
initialize()
Initialize the PennyLane backend.
Source code in quantum_data_embedding_suite\backends\pennylane_backend.py
sample_circuit(circuit, shots)
Sample from a quantum circuit.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
circuit
|
callable
|
PennyLane quantum function |
required |
shots
|
int
|
Number of samples |
required |
Returns:
Name | Type | Description |
---|---|---|
samples |
ndarray
|
Array of measurement samples |
Source code in quantum_data_embedding_suite\backends\pennylane_backend.py
Backend Utilities
get_available_backends
get_backend(backend, device=None, shots=1024, **kwargs)
Factory function to create backend instances.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
backend
|
str
|
Backend name ('qiskit', 'pennylane') |
required |
device
|
str
|
Specific device/simulator to use |
None
|
shots
|
int
|
Number of measurement shots |
1024
|
**kwargs
|
Additional backend-specific parameters |
{}
|
Returns:
Name | Type | Description |
---|---|---|
backend_instance |
BaseBackend
|
Initialized backend instance |
Source code in quantum_data_embedding_suite\backends\__init__.py
create_backend
BACKEND_REGISTRY = {'qiskit': QiskitBackend, 'pennylane': PennyLaneBackend}
module-attribute
Usage Examples
Basic Backend Creation
from quantum_data_embedding_suite.backends import (
QiskitBackend, PennyLaneBackend, create_backend
)
# Create Qiskit backend
qiskit_backend = QiskitBackend(
device_name="qasm_simulator",
shots=1024,
seed=42
)
# Create PennyLane backend
pennylane_backend = PennyLaneBackend(
device_name="default.qubit",
shots=1024,
seed=42
)
# Create backend using factory function
backend = create_backend(
backend_type="qiskit",
device_name="aer_simulator",
shots=2048
)
print(f"Backend type: {type(backend).__name__}")
print(f"Device: {backend.device_name}")
print(f"Shots: {backend.shots}")
Backend Discovery and Selection
from quantum_data_embedding_suite.backends import get_available_backends, backend_info
# Discover available backends
available = get_available_backends()
print("Available Backends:")
for backend_type, devices in available.items():
print(f"\n{backend_type.upper()}:")
for device in devices:
info = backend_info(backend_type, device)
print(f" - {device}: {info.get('description', 'No description')}")
# Show device capabilities
if 'capabilities' in info:
caps = info['capabilities']
print(f" Qubits: {caps.get('max_qubits', 'Unknown')}")
print(f" Noise: {'Yes' if caps.get('supports_noise') else 'No'}")
print(f" GPU: {'Yes' if caps.get('gpu_support') else 'No'}")
# Select optimal backend for task
def select_optimal_backend(n_qubits, require_noise=False, prefer_gpu=False):
"""Select the best available backend for given requirements"""
available = get_available_backends()
best_backend = None
best_score = -1
for backend_type, devices in available.items():
for device in devices:
info = backend_info(backend_type, device)
caps = info.get('capabilities', {})
# Check requirements
if caps.get('max_qubits', 0) < n_qubits:
continue
if require_noise and not caps.get('supports_noise', False):
continue
# Calculate score
score = 0
score += caps.get('max_qubits', 0) * 0.1 # More qubits is better
score += 10 if caps.get('supports_noise', False) else 0
score += 5 if caps.get('gpu_support', False) and prefer_gpu else 0
score += 3 if backend_type == 'qiskit' else 0 # Slight preference for Qiskit
if score > best_score:
best_score = score
best_backend = (backend_type, device)
return best_backend
# Find optimal backend
optimal = select_optimal_backend(n_qubits=6, require_noise=False, prefer_gpu=True)
if optimal:
backend_type, device = optimal
backend = create_backend(backend_type, device)
print(f"\nSelected optimal backend: {backend_type}/{device}")
else:
print("\nNo suitable backend found")
Advanced Configuration
# Advanced Qiskit configuration
from qiskit import IBMQ
from qiskit.providers.aer.noise import NoiseModel
from qiskit.providers.aer.noise.errors import pauli_error, depolarizing_error
# Configure with noise model
def create_noisy_qiskit_backend():
"""Create Qiskit backend with realistic noise"""
# Create noise model
noise_model = NoiseModel()
# Add depolarizing error to gates
error_1q = depolarizing_error(0.001, 1) # 0.1% error rate
error_2q = depolarizing_error(0.01, 2) # 1% error rate
noise_model.add_all_qubit_quantum_error(error_1q, ['u1', 'u2', 'u3'])
noise_model.add_all_qubit_quantum_error(error_2q, ['cx'])
# Add measurement error
from qiskit.providers.aer.noise.errors import ReadoutError
readout_error = ReadoutError([[0.98, 0.02], [0.03, 0.97]])
noise_model.add_all_qubit_readout_error(readout_error)
# Create backend with noise
backend = QiskitBackend(
device_name="aer_simulator",
shots=2048,
noise_model=noise_model,
basis_gates=noise_model.basis_gates,
coupling_map=None
)
return backend
noisy_backend = create_noisy_qiskit_backend()
# Advanced PennyLane configuration
import pennylane as qml
def create_advanced_pennylane_backend():
"""Create PennyLane backend with advanced features"""
# Create device with custom configuration
device = qml.device(
'default.qubit',
wires=8,
shots=1024,
analytic=False, # Use sampling
seed=42
)
backend = PennyLaneBackend(
device=device,
differentiable=True,
interface='autograd'
)
return backend
advanced_pennylane = create_advanced_pennylane_backend()
Backend Performance Benchmarking
import time
import numpy as np
from quantum_data_embedding_suite.embeddings import AngleEmbedding
def benchmark_backend(backend, embedding, X, n_trials=10):
"""Benchmark backend performance"""
times = []
for trial in range(n_trials):
start_time = time.time()
try:
# Execute embedding on multiple data points
for x in X[:5]: # Test with 5 data points
circuit = embedding.embed(x)
backend.execute(circuit)
end_time = time.time()
times.append(end_time - start_time)
except Exception as e:
print(f"Error in trial {trial}: {e}")
continue
if not times:
return None
results = {
'mean_time': np.mean(times),
'std_time': np.std(times),
'min_time': np.min(times),
'max_time': np.max(times),
'n_successful_trials': len(times),
'throughput': len(X[:5]) / np.mean(times) # circuits per second
}
return results
# Benchmark different backends
embedding = AngleEmbedding(n_qubits=4)
X = np.random.randn(10, 4)
backends_to_test = {
'qiskit_simulator': QiskitBackend("qasm_simulator", shots=1024),
'pennylane_default': PennyLaneBackend("default.qubit", shots=1024)
}
benchmark_results = {}
print("Backend Benchmarking Results:")
print("=" * 50)
for name, backend in backends_to_test.items():
print(f"\nTesting {name}...")
results = benchmark_backend(backend, embedding, X)
if results:
benchmark_results[name] = results
print(f" Mean execution time: {results['mean_time']:.4f}s")
print(f" Std deviation: {results['std_time']:.4f}s")
print(f" Throughput: {results['throughput']:.2f} circuits/s")
print(f" Successful trials: {results['n_successful_trials']}/10")
else:
print(f" Benchmark failed for {name}")
# Find fastest backend
if benchmark_results:
fastest = min(benchmark_results.items(), key=lambda x: x[1]['mean_time'])
print(f"\nFastest backend: {fastest[0]} ({fastest[1]['mean_time']:.4f}s)")
Hardware Integration
Real Quantum Hardware Access
from qiskit import IBMQ
from qiskit.providers.ibmq import least_busy
def setup_ibm_hardware_backend(hub=None, group=None, project=None):
"""Setup connection to IBM Quantum hardware"""
try:
# Load account (assumes IBMQ account is saved)
IBMQ.load_account()
# Get provider
if hub and group and project:
provider = IBMQ.get_provider(hub=hub, group=group, project=project)
else:
provider = IBMQ.get_provider()
# Get available backends
backends = provider.backends(
filters=lambda x: x.configuration().n_qubits >= 5 and
not x.configuration().simulator and
x.status().operational
)
if not backends:
print("No operational quantum hardware available")
return None
# Select least busy backend
least_busy_backend = least_busy(backends)
# Create our backend wrapper
hardware_backend = QiskitHardware(
provider=provider,
backend_name=least_busy_backend.name(),
shots=1024,
optimization_level=2
)
print(f"Connected to {least_busy_backend.name()}")
print(f"Qubits: {least_busy_backend.configuration().n_qubits}")
print(f"Queue length: {least_busy_backend.status().pending_jobs}")
return hardware_backend
except Exception as e:
print(f"Failed to setup IBM hardware backend: {e}")
return None
# Setup hardware backend
hardware_backend = setup_ibm_hardware_backend()
if hardware_backend:
# Execute on real quantum hardware
embedding = AngleEmbedding(n_qubits=4)
test_data = np.array([0.1, 0.2, 0.3, 0.4])
circuit = embedding.embed(test_data)
result = hardware_backend.execute(circuit)
print(f"Hardware execution result: {result}")
Error Mitigation
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
def create_error_mitigated_backend(base_backend):
"""Create backend with measurement error mitigation"""
class ErrorMitigatedBackend:
def __init__(self, base_backend):
self.base_backend = base_backend
self.calibration_fitter = None
self._setup_calibration()
def _setup_calibration(self):
"""Setup measurement error calibration"""
try:
# Create calibration circuits
n_qubits = 5 # Assume 5 qubits for calibration
qubits = list(range(n_qubits))
cal_circuits, state_labels = complete_meas_cal(
qubit_list=qubits,
circlabel='cal'
)
# Execute calibration circuits
cal_results = []
for circuit in cal_circuits:
result = self.base_backend.execute(circuit)
cal_results.append(result)
# Create fitter
self.calibration_fitter = CompleteMeasFitter(
cal_results, state_labels, circlabel='cal'
)
print("Measurement error calibration complete")
except Exception as e:
print(f"Calibration failed: {e}")
self.calibration_fitter = None
def execute(self, circuit):
"""Execute circuit with error mitigation"""
# Execute original circuit
raw_result = self.base_backend.execute(circuit)
# Apply error mitigation if calibration available
if self.calibration_fitter:
try:
mitigated_result = self.calibration_fitter.filter.apply(raw_result)
return mitigated_result
except Exception as e:
print(f"Error mitigation failed: {e}")
return raw_result
return raw_result
def __getattr__(self, name):
"""Delegate other attributes to base backend"""
return getattr(self.base_backend, name)
return ErrorMitigatedBackend(base_backend)
# Create error-mitigated backend
if hardware_backend:
mitigated_backend = create_error_mitigated_backend(hardware_backend)
Backend Comparison and Analysis
Feature Comparison Matrix
def compare_backend_features():
"""Compare features across different backends"""
backends = [
('qiskit', 'qasm_simulator'),
('qiskit', 'statevector_simulator'),
('pennylane', 'default.qubit'),
('pennylane', 'default.mixed'),
]
features = [
'max_qubits', 'supports_noise', 'gpu_support', 'differentiable',
'supports_measurements', 'supports_conditional', 'parallelizable'
]
comparison_matrix = []
for backend_type, device in backends:
try:
info = backend_info(backend_type, device)
caps = info.get('capabilities', {})
row = [f"{backend_type}/{device}"]
for feature in features:
value = caps.get(feature, 'Unknown')
if isinstance(value, bool):
value = '✓' if value else '✗'
row.append(str(value))
comparison_matrix.append(row)
except Exception as e:
print(f"Error getting info for {backend_type}/{device}: {e}")
continue
# Create DataFrame for easy viewing
import pandas as pd
columns = ['Backend'] + features
df = pd.DataFrame(comparison_matrix, columns=columns)
return df
# Generate comparison
comparison_df = compare_backend_features()
print("Backend Feature Comparison:")
print(comparison_df.to_string(index=False))
Backend Recommendations
def recommend_backend(use_case, requirements=None):
"""Recommend optimal backend for specific use case"""
if requirements is None:
requirements = {}
recommendations = {
'development': {
'primary': ('qiskit', 'qasm_simulator'),
'alternative': ('pennylane', 'default.qubit'),
'reason': 'Fast execution, good debugging tools'
},
'research': {
'primary': ('qiskit', 'statevector_simulator'),
'alternative': ('pennylane', 'default.qubit'),
'reason': 'Exact results, noise-free environment'
},
'machine_learning': {
'primary': ('pennylane', 'default.qubit'),
'alternative': ('qiskit', 'qasm_simulator'),
'reason': 'Automatic differentiation, ML integration'
},
'noise_modeling': {
'primary': ('qiskit', 'aer_simulator'),
'alternative': ('pennylane', 'default.mixed'),
'reason': 'Advanced noise models, realistic simulation'
},
'production': {
'primary': ('qiskit', 'ibmq_hardware'),
'alternative': ('qiskit', 'aer_simulator'),
'reason': 'Real quantum hardware access'
},
'large_scale': {
'primary': ('qiskit', 'aer_simulator_gpu'),
'alternative': ('pennylane', 'lightning.gpu'),
'reason': 'GPU acceleration, high qubit count'
}
}
if use_case not in recommendations:
return {
'recommendation': 'No specific recommendation',
'suggested_backends': [('qiskit', 'qasm_simulator'), ('pennylane', 'default.qubit')],
'reason': 'General-purpose backends suitable for most tasks'
}
rec = recommendations[use_case]
# Check if recommended backends are available
available = get_available_backends()
primary_available = (rec['primary'][0] in available and
rec['primary'][1] in available[rec['primary'][0]])
alt_available = (rec['alternative'][0] in available and
rec['alternative'][1] in available[rec['alternative'][0]])
final_rec = {
'use_case': use_case,
'primary_recommendation': rec['primary'] if primary_available else None,
'alternative_recommendation': rec['alternative'] if alt_available else None,
'reason': rec['reason'],
'requirements_met': True # Could add requirement checking logic
}
return final_rec
# Get recommendations for different use cases
use_cases = ['development', 'research', 'machine_learning', 'production']
print("Backend Recommendations:")
print("=" * 50)
for use_case in use_cases:
rec = recommend_backend(use_case)
print(f"\n{use_case.upper()}:")
if rec['primary_recommendation']:
backend_type, device = rec['primary_recommendation']
print(f" Primary: {backend_type}/{device}")
if rec['alternative_recommendation']:
backend_type, device = rec['alternative_recommendation']
print(f" Alternative: {backend_type}/{device}")
print(f" Reason: {rec['reason']}")
Custom Backend Development
Creating Custom Backends
from quantum_data_embedding_suite.backends.base import BaseBackend
class CustomQuantumBackend(BaseBackend):
"""Example custom quantum backend implementation"""
def __init__(self, custom_param=None, **kwargs):
super().__init__(**kwargs)
self.custom_param = custom_param
self._setup_custom_features()
def _setup_custom_features(self):
"""Setup custom backend features"""
self.custom_features = {
'special_gates': True,
'advanced_optimization': True,
'custom_metrics': True
}
print(f"Custom backend initialized with param: {self.custom_param}")
def execute(self, circuit, **kwargs):
"""Execute quantum circuit with custom processing"""
# Pre-processing
optimized_circuit = self._optimize_circuit(circuit)
# Execute (this would interface with actual quantum hardware/simulator)
result = self._execute_circuit(optimized_circuit, **kwargs)
# Post-processing
processed_result = self._post_process_result(result)
return processed_result
def _optimize_circuit(self, circuit):
"""Apply custom circuit optimizations"""
# Implement custom optimization logic
print(f"Applying custom optimization to circuit with {circuit.depth()} depth")
# Placeholder optimization
return circuit
def _execute_circuit(self, circuit, **kwargs):
"""Execute the circuit (placeholder implementation)"""
# This would interface with actual quantum execution
# For demonstration, return mock results
n_qubits = circuit.num_qubits
shots = kwargs.get('shots', self.shots)
# Generate mock measurement results
import random
results = {}
for _ in range(shots):
# Generate random bit string
bitstring = ''.join([str(random.randint(0, 1)) for _ in range(n_qubits)])
results[bitstring] = results.get(bitstring, 0) + 1
return results
def _post_process_result(self, result):
"""Apply custom post-processing to results"""
# Implement custom result processing
print("Applying custom post-processing")
# Example: Add metadata
processed = {
'counts': result,
'metadata': {
'backend_type': 'custom',
'custom_param': self.custom_param,
'post_processed': True
}
}
return processed
def get_backend_info(self):
"""Return backend information"""
info = super().get_backend_info()
info.update({
'custom_features': self.custom_features,
'custom_param': self.custom_param
})
return info
# Use custom backend
custom_backend = CustomQuantumBackend(
custom_param="special_mode",
shots=2048,
seed=42
)
# Test custom backend
embedding = AngleEmbedding(n_qubits=3)
test_data = np.array([0.1, 0.2, 0.3])
circuit = embedding.embed(test_data)
result = custom_backend.execute(circuit)
print("\nCustom Backend Result:")
print(f"Counts: {result['counts']}")
print(f"Metadata: {result['metadata']}")
Backend Plugin System
class BackendRegistry:
"""Registry for custom backends"""
_backends = {}
@classmethod
def register(cls, name, backend_class):
"""Register a custom backend"""
cls._backends[name] = backend_class
print(f"Registered backend: {name}")
@classmethod
def get_backend(cls, name, **kwargs):
"""Get registered backend instance"""
if name not in cls._backends:
raise ValueError(f"Backend '{name}' not registered")
backend_class = cls._backends[name]
return backend_class(**kwargs)
@classmethod
def list_backends(cls):
"""List all registered backends"""
return list(cls._backends.keys())
# Register custom backend
BackendRegistry.register('custom', CustomQuantumBackend)
# Use registered backend
registered_backend = BackendRegistry.get_backend('custom', custom_param="registry_test")
print(f"Available backends: {BackendRegistry.list_backends()}")