Workflow Orchestration¶
OpenML Crawler provides powerful workflow orchestration capabilities for managing complex data processing pipelines. The system supports workflow definition, execution, monitoring, scheduling, and error handling across distributed environments.
Workflow Definition¶
Workflow DSL¶
Define workflows using a domain-specific language:
from openmlcrawler.orchestration import WorkflowDefinition
workflow_def = WorkflowDefinition()
# Define a data processing workflow
workflow = workflow_def.create_workflow(
name="customer_analytics_pipeline",
description="End-to-end customer data processing and analytics",
version="1.0.0",
tags=["analytics", "customer_data", "daily"]
)
# Add workflow tasks
workflow.add_task(
name="extract_customer_data",
type="data_ingestion",
config={
"source": "postgresql://db.customer_data",
"query": "SELECT * FROM customers WHERE updated_date >= '{{ yesterday }}'",
"output_format": "parquet"
},
dependencies=[]
)
workflow.add_task(
name="validate_customer_data",
type="data_validation",
config={
"input": "{{ extract_customer_data.output }}",
"schema": "customer_schema.json",
"validation_rules": ["not_null", "data_type", "range_check"]
},
dependencies=["extract_customer_data"]
)
workflow.add_task(
name="enrich_customer_data",
type="data_enrichment",
config={
"input": "{{ validate_customer_data.output }}",
"enrichment_sources": ["geographic_data", "demographic_data"],
"join_keys": ["postal_code", "customer_id"]
},
dependencies=["validate_customer_data"]
)
# Define workflow triggers
workflow.add_trigger(
name="daily_schedule",
type="schedule",
config={
"cron": "0 2 * * *", # Daily at 2 AM
"timezone": "UTC"
}
)
workflow.add_trigger(
name="manual_trigger",
type="manual",
config={
"parameters": ["date_range", "customer_segment"]
}
)
Visual Workflow Builder¶
Create workflows using a visual interface:
from openmlcrawler.orchestration import VisualWorkflowBuilder
builder = VisualWorkflowBuilder()
# Create workflow canvas
workflow = builder.create_canvas(
name="complex_data_pipeline",
layout="hierarchical"
)
# Add workflow nodes
extract_node = builder.add_node(
name="data_extraction",
type="source",
position={"x": 100, "y": 100},
config={
"connector": "api",
"endpoint": "https://api.example.com/data",
"authentication": "oauth2"
}
)
transform_node = builder.add_node(
name="data_transformation",
type="processor",
position={"x": 300, "y": 100},
config={
"operations": ["clean", "normalize", "aggregate"],
"output_format": "parquet"
}
)
load_node = builder.add_node(
name="data_loading",
type="sink",
position={"x": 500, "y": 100},
config={
"destination": "s3://data-lake/processed/",
"partition_by": "date"
}
)
# Connect nodes
builder.connect_nodes(
source=extract_node,
target=transform_node,
condition="success"
)
builder.connect_nodes(
source=transform_node,
target=load_node,
condition="data_quality_score > 0.8"
)
# Add conditional branches
quality_check = builder.add_conditional_node(
name="quality_gate",
position={"x": 400, "y": 200},
conditions=[
{
"condition": "quality_score >= 0.9",
"next_node": load_node
},
{
"condition": "quality_score >= 0.7",
"next_node": "data_repair"
},
{
"condition": "quality_score < 0.7",
"next_node": "alert_team"
}
]
)
Template-Based Workflows¶
Use pre-built workflow templates:
from openmlcrawler.orchestration import WorkflowTemplates
templates = WorkflowTemplates()
# Use ETL template
etl_workflow = templates.create_from_template(
template="etl_pipeline",
parameters={
"source_type": "database",
"source_connection": "postgres://...",
"target_type": "data_warehouse",
"target_connection": "snowflake://...",
"tables": ["customers", "orders", "products"],
"incremental": True
}
)
# Use ML pipeline template
ml_workflow = templates.create_from_template(
template="ml_pipeline",
parameters={
"data_source": "s3://ml-data/",
"model_type": "classification",
"target_column": "churn",
"features": ["age", "tenure", "usage"],
"train_test_split": 0.8,
"evaluation_metric": "accuracy"
}
)
# Use streaming pipeline template
streaming_workflow = templates.create_from_template(
template="streaming_pipeline",
parameters={
"input_stream": "kafka://topic.input",
"processing_logic": "real_time_aggregation",
"window_size": "5_minutes",
"output_stream": "kafka://topic.output",
"checkpoint_location": "s3://checkpoints/"
}
)
Execution Engines¶
Local Execution¶
Run workflows on local infrastructure:
from openmlcrawler.orchestration import LocalExecutor
executor = LocalExecutor()
# Configure local execution
executor.configure(
max_workers=4,
memory_limit="8GB",
temp_directory="/tmp/openml_workflows",
log_level="INFO"
)
# Execute workflow locally
execution = executor.execute_workflow(
workflow=workflow_definition,
parameters={
"environment": "development",
"date_range": "2023-01-01 to 2023-12-31"
},
async_execution=False
)
# Monitor execution
status = executor.get_execution_status(execution_id=execution["id"])
logs = executor.get_execution_logs(execution_id=execution["id"])
Distributed Execution¶
Execute workflows across distributed systems:
from openmlcrawler.orchestration import DistributedExecutor
dist_executor = DistributedExecutor()
# Configure distributed execution
dist_executor.configure(
cluster_type="kubernetes", # or "spark", "dask", "ray"
master_url="k8s://openml-cluster",
worker_nodes=10,
resource_limits={
"cpu": "2",
"memory": "4Gi"
}
)
# Execute workflow distributed
dist_execution = dist_executor.execute_workflow(
workflow=workflow_definition,
execution_mode="parallel", # or "sequential", "dag"
fault_tolerance=True,
retry_policy={
"max_attempts": 3,
"backoff": "exponential",
"max_delay": "5_minutes"
}
)
# Scale execution
dist_executor.scale_execution(
execution_id=dist_execution["id"],
target_workers=20,
scaling_policy="cpu_utilization > 70%"
)
Cloud-Native Execution¶
Execute workflows on cloud platforms:
from openmlcrawler.orchestration import CloudExecutor
cloud_executor = CloudExecutor()
# Configure cloud execution
cloud_executor.configure(
provider="aws", # or "gcp", "azure"
region="us-east-1",
execution_service="step_functions", # or "data_pipeline", "composer"
resource_allocation={
"instance_type": "m5.large",
"spot_instances": True,
"auto_scaling": True
}
)
# Execute workflow on cloud
cloud_execution = cloud_executor.execute_workflow(
workflow=workflow_definition,
execution_environment="serverless", # or "container", "vm"
cost_optimization=True,
monitoring_enabled=True
)
# Cloud-specific features
cloud_executor.enable_features([
"spot_instance_support",
"auto_scaling_groups",
"cloud_watch_monitoring",
"x_ray_tracing"
])
Scheduling and Triggers¶
Cron-Based Scheduling¶
Schedule workflows using cron expressions:
from openmlcrawler.orchestration import WorkflowScheduler
scheduler = WorkflowScheduler()
# Schedule workflow with cron
schedule_id = scheduler.schedule_workflow(
workflow_name="daily_data_pipeline",
cron_expression="0 6 * * 1-5", # Monday to Friday at 6 AM
timezone="America/New_York",
parameters={
"date": "{{ yesterday }}",
"environment": "production"
},
enabled=True
)
# Complex scheduling
complex_schedule = scheduler.create_complex_schedule(
workflow_name="weekly_report",
schedule_config={
"frequency": "weekly",
"day_of_week": "monday",
"time": "09:00",
"timezone": "UTC",
"conditions": [
"data_available('last_week')",
"system_load < 80%"
]
}
)
Event-Based Triggers¶
Trigger workflows based on events:
from openmlcrawler.orchestration import EventTrigger
event_trigger = EventTrigger()
# File-based triggers
file_trigger = event_trigger.create_file_trigger(
workflow_name="file_processing_pipeline",
watch_path="s3://input-bucket/data/",
file_pattern="*.json",
event_types=["created", "modified"],
debounce_seconds=30
)
# Database triggers
db_trigger = event_trigger.create_database_trigger(
workflow_name="data_sync_pipeline",
connection_string="postgres://...",
table="customers",
event_types=["insert", "update"],
batch_size=100,
polling_interval=60
)
# API-based triggers
api_trigger = event_trigger.create_api_trigger(
workflow_name="webhook_pipeline",
endpoint="/webhooks/data-update",
authentication="bearer_token",
payload_schema="data_update_schema.json"
)
# Message queue triggers
queue_trigger = event_trigger.create_queue_trigger(
workflow_name="message_processing_pipeline",
queue_url="sqs://data-queue",
message_format="json",
batch_size=10,
visibility_timeout=300
)
Conditional Triggers¶
Trigger workflows based on conditions:
from openmlcrawler.orchestration import ConditionalTrigger
conditional_trigger = ConditionalTrigger()
# Data quality-based triggers
quality_trigger = conditional_trigger.create_quality_trigger(
workflow_name="data_quality_pipeline",
data_source="production_database",
quality_metrics={
"completeness": {"threshold": 0.95, "operator": "<"},
"accuracy": {"threshold": 0.98, "operator": "<"}
},
check_interval=3600, # 1 hour
cooldown_period=1800 # 30 minutes
)
# Business logic triggers
business_trigger = conditional_trigger.create_business_trigger(
workflow_name="business_intelligence_pipeline",
conditions=[
{
"name": "sales_threshold",
"query": "SELECT SUM(amount) > 1000000 FROM sales WHERE date = CURRENT_DATE",
"check_interval": 1800
},
{
"name": "inventory_alert",
"query": "SELECT COUNT(*) < 100 FROM inventory WHERE status = 'low'",
"check_interval": 3600
}
]
)
# External system triggers
external_trigger = conditional_trigger.create_external_trigger(
workflow_name="system_integration_pipeline",
external_system="erp_system",
trigger_condition="order_status_changed",
parameters_mapping={
"order_id": "external_id",
"status": "new_status",
"timestamp": "change_time"
}
)
Monitoring and Observability¶
Workflow Monitoring¶
Comprehensive workflow monitoring:
from openmlcrawler.orchestration import WorkflowMonitor
monitor = WorkflowMonitor()
# Monitor workflow execution
execution_status = monitor.monitor_execution(
workflow_name="customer_pipeline",
execution_id="exec_12345",
metrics=[
"execution_time",
"task_success_rate",
"resource_utilization",
"error_rate",
"data_throughput"
]
)
# Real-time dashboard
dashboard = monitor.create_dashboard(
workflow_name="customer_pipeline",
metrics=execution_status,
refresh_interval=30,
alert_thresholds={
"error_rate": 0.05,
"execution_time": 3600 # 1 hour
}
)
# Performance analytics
analytics = monitor.analyze_performance(
workflow_name="customer_pipeline",
time_range=("2023-01-01", "2023-12-31"),
analysis_types=[
"execution_trends",
"bottleneck_analysis",
"resource_optimization",
"failure_patterns"
]
)
Task Monitoring¶
Monitor individual workflow tasks:
from openmlcrawler.orchestration import TaskMonitor
task_monitor = TaskMonitor()
# Monitor task execution
task_status = task_monitor.monitor_task(
workflow_execution_id="exec_12345",
task_name="data_validation",
metrics=[
"duration",
"memory_usage",
"cpu_usage",
"input_output_size",
"error_details"
]
)
# Task dependencies monitoring
dependencies = task_monitor.monitor_dependencies(
workflow_execution_id="exec_12345",
include_blocking_tasks=True,
include_waiting_tasks=True
)
# Task retry monitoring
retries = task_monitor.monitor_retries(
workflow_execution_id="exec_12345",
include_retry_reasons=True,
include_retry_delays=True
)
Alerting and Notifications¶
Set up workflow alerts and notifications:
from openmlcrawler.orchestration import WorkflowAlerting
alerting = WorkflowAlerting()
# Configure alerts
alerting.configure_alerts([
{
"name": "workflow_failure",
"condition": "execution_status == 'failed'",
"channels": ["email", "slack", "pagerduty"],
"escalation_policy": "immediate"
},
{
"name": "long_running_workflow",
"condition": "execution_time > 7200", # 2 hours
"channels": ["email"],
"escalation_policy": "delayed"
},
{
"name": "data_quality_issue",
"condition": "quality_score < 0.8",
"channels": ["slack"],
"escalation_policy": "notification_only"
}
])
# Custom alert conditions
custom_alert = alerting.create_custom_alert(
name="business_metric_alert",
condition="""
SELECT AVG(sales_amount) < 50000
FROM daily_sales
WHERE date = CURRENT_DATE
""",
check_interval=3600,
notification_template="sales_drop_alert.html"
)
# Alert history and analytics
alert_history = alerting.get_alert_history(
time_range=("2023-01-01", "2023-12-31"),
alert_types=["failure", "performance", "quality"],
include_resolved=True
)
Error Handling and Recovery¶
Retry Policies¶
Configure retry behavior for failed tasks:
from openmlcrawler.orchestration import RetryPolicy
retry_policy = RetryPolicy()
# Exponential backoff retry
exponential_retry = retry_policy.create_policy(
name="exponential_backoff",
max_attempts=5,
initial_delay=60, # seconds
backoff_multiplier=2.0,
max_delay=3600, # 1 hour
retry_condition="transient_error"
)
# Custom retry conditions
custom_retry = retry_policy.create_policy(
name="custom_retry",
max_attempts=3,
retry_logic="""
if error.type == 'connection_error':
return True
elif error.type == 'data_error' and error.severity == 'low':
return True
else:
return False
""",
delay_strategy="fixed",
delay_seconds=300
)
# Circuit breaker pattern
circuit_breaker = retry_policy.create_circuit_breaker(
name="api_circuit_breaker",
failure_threshold=5,
recovery_timeout=600, # 10 minutes
monitoring_window=300 # 5 minutes
)
Error Recovery¶
Implement error recovery strategies:
from openmlcrawler.orchestration import ErrorRecovery
recovery = ErrorRecovery()
# Define recovery strategies
recovery_strategies = recovery.define_strategies([
{
"name": "data_backup_recovery",
"trigger_condition": "data_corruption_error",
"recovery_action": "restore_from_backup",
"backup_location": "s3://backups/",
"verification_step": "data_integrity_check"
},
{
"name": "skip_and_continue",
"trigger_condition": "non_critical_error",
"recovery_action": "skip_task",
"compensation_action": "log_warning",
"continue_workflow": True
},
{
"name": "manual_intervention",
"trigger_condition": "business_logic_error",
"recovery_action": "pause_workflow",
"notification": "alert_data_team",
"resume_condition": "manual_approval"
}
])
# Automatic error recovery
recovery_result = recovery.execute_recovery(
workflow_execution_id="exec_12345",
error_details=error_info,
strategy_selection="automatic", # or "manual"
max_recovery_attempts=3
)
# Recovery monitoring
recovery_status = recovery.monitor_recovery(
recovery_execution_id=recovery_result["id"],
monitoring_metrics=[
"recovery_time",
"success_rate",
"data_loss_assessment",
"system_impact"
]
)
Compensation Actions¶
Implement compensation for failed operations:
from openmlcrawler.orchestration import CompensationManager
compensation = CompensationManager()
# Define compensation actions
compensations = compensation.define_compensations([
{
"name": "undo_data_modification",
"trigger": "data_update_task_failure",
"compensation_query": "UPDATE table SET status = 'original' WHERE id = ?",
"rollback_data": True
},
{
"name": "delete_created_files",
"trigger": "file_creation_task_failure",
"compensation_action": "delete_files",
"file_pattern": "temp_*.tmp",
"cleanup_location": "s3://temp-files/"
},
{
"name": "revert_database_changes",
"trigger": "database_task_failure",
"compensation_action": "execute_rollback_script",
"script_location": "scripts/rollback.sql",
"backup_required": True
}
])
# Execute compensation
compensation_result = compensation.execute_compensation(
workflow_execution_id="exec_12345",
failed_task="data_processing",
compensation_strategy="undo_data_modification",
verify_compensation=True
)
Advanced Orchestration Features¶
Dynamic Workflows¶
Create workflows that adapt at runtime:
from openmlcrawler.orchestration import DynamicWorkflow
dynamic = DynamicWorkflow()
# Create dynamic workflow
workflow = dynamic.create_dynamic_workflow(
name="adaptive_pipeline",
base_structure={
"extract": {"type": "data_ingestion"},
"validate": {"type": "data_validation"},
"process": {"type": "data_processing"}
}
)
# Add dynamic decision points
dynamic.add_decision_point(
workflow=workflow,
decision_name="data_volume_check",
condition="input_data_size > 1000000", # 1M records
true_branch={
"parallel_processing": {"type": "distributed_processing", "workers": 4}
},
false_branch={
"single_processing": {"type": "local_processing"}
}
)
# Runtime adaptation
adaptation = dynamic.adapt_workflow(
workflow_instance=workflow,
runtime_conditions={
"system_load": 0.8,
"available_memory": "4GB",
"data_characteristics": "high_variance"
},
adaptation_rules=[
"scale_workers_if_high_load",
"switch_to_memory_optimized_if_low_memory",
"add_validation_if_high_variance"
]
)
Workflow Composition¶
Compose complex workflows from simpler ones:
from openmlcrawler.orchestration import WorkflowComposer
composer = WorkflowComposer()
# Define workflow components
components = {
"data_ingestion": composer.create_component(
name="data_ingestion",
tasks=["extract_api", "extract_database", "extract_files"],
input_schema="ingestion_input.json",
output_schema="raw_data.json"
),
"data_processing": composer.create_component(
name="data_processing",
tasks=["validate", "clean", "transform", "enrich"],
input_schema="raw_data.json",
output_schema="processed_data.json"
),
"data_output": composer.create_component(
name="data_output",
tasks=["load_database", "load_files", "send_notifications"],
input_schema="processed_data.json",
output_schema="completion_status.json"
)
}
# Compose workflow
composed_workflow = composer.compose_workflow(
name="complete_data_pipeline",
components=components,
data_flow=[
"data_ingestion -> data_processing",
"data_processing -> data_output"
],
error_handling="component_level",
monitoring="comprehensive"
)
# Nested composition
nested_workflow = composer.create_nested_workflow(
name="multi_stage_pipeline",
sub_workflows=[
"stage1_processing",
"stage2_analytics",
"stage3_reporting"
],
coordination="event_driven"
)
Workflow Versioning¶
Manage workflow versions and deployments:
from openmlcrawler.orchestration import WorkflowVersioning
versioning = WorkflowVersioning()
# Create workflow version
version = versioning.create_version(
workflow_name="customer_pipeline",
version_number="2.1.0",
changes={
"added": ["new_validation_rules"],
"modified": ["data_transformation_logic"],
"deprecated": ["old_reporting_format"]
},
compatibility="backward_compatible"
)
# Version comparison
comparison = versioning.compare_versions(
workflow_name="customer_pipeline",
version1="2.0.0",
version2="2.1.0",
comparison_type="diff" # or "compatibility", "impact"
)
# Version deployment
deployment = versioning.deploy_version(
workflow_name="customer_pipeline",
version="2.1.0",
deployment_strategy="canary", # or "blue_green", "rolling"
traffic_distribution={
"v2.0.0": 0.9,
"v2.1.0": 0.1
},
rollback_enabled=True
)
# Version lifecycle management
lifecycle = versioning.manage_lifecycle(
workflow_name="customer_pipeline",
retention_policy={
"development": "keep_last_5",
"staging": "keep_last_10",
"production": "keep_last_20"
},
archival_policy="compress_after_1_year"
)
Configuration¶
Orchestration Configuration¶
Configure orchestration settings:
orchestration:
engine:
type: "kubernetes" # or "local", "distributed", "cloud"
max_concurrent_workflows: 10
default_timeout: 3600
retry_policy: "exponential_backoff"
scheduling:
timezone: "UTC"
max_schedule_ahead: "30_days"
conflict_resolution: "priority_based"
monitoring:
enable_detailed_logging: true
metrics_collection: true
alert_on_failure: true
dashboard_enabled: true
error_handling:
default_retry_attempts: 3
circuit_breaker_enabled: true
compensation_enabled: true
security:
workflow_encryption: true
audit_logging: true
access_control: "rbac"
Workflow Templates Configuration¶
Configure workflow templates:
workflow_templates:
etl_pipeline:
stages: ["extract", "transform", "load"]
default_connectors:
extract: "database"
load: "data_warehouse"
validation_rules: ["schema_check", "data_quality"]
monitoring: "standard"
ml_pipeline:
stages: ["data_prep", "feature_eng", "model_train", "model_eval", "model_deploy"]
default_algorithms: ["random_forest", "xgboost", "neural_network"]
evaluation_metrics: ["accuracy", "precision", "recall", "f1_score"]
deployment_targets: ["api", "batch", "streaming"]
streaming_pipeline:
stages: ["stream_ingest", "real_time_process", "stream_output"]
windowing_strategies: ["tumbling", "sliding", "session"]
state_management: "checkpointing"
fault_tolerance: "exactly_once"
Best Practices¶
Workflow Design¶
- Modular Design: Break complex workflows into smaller, manageable components
- Error Boundaries: Implement proper error boundaries and isolation
- Idempotency: Design tasks to be idempotent for reliable retries
- Dependency Management: Clearly define and manage task dependencies
- Resource Optimization: Optimize resource usage and parallelization
- Monitoring Integration: Integrate comprehensive monitoring from the start
Execution Optimization¶
- Parallel Execution: Maximize parallel execution where possible
- Resource Pooling: Use resource pooling for efficient resource management
- Caching: Implement intelligent caching for intermediate results
- Batch Processing: Use batch processing for bulk operations
- Lazy Evaluation: Use lazy evaluation for conditional execution
- Incremental Processing: Implement incremental processing for efficiency
Reliability¶
- Fault Tolerance: Design for failure with proper retry and recovery mechanisms
- Circuit Breakers: Implement circuit breakers for external service calls
- Graceful Degradation: Ensure graceful degradation under load or failure
- Health Checks: Implement comprehensive health checks and monitoring
- Backup and Recovery: Maintain backup and recovery procedures
- Disaster Recovery: Plan for disaster recovery scenarios
Scalability¶
- Horizontal Scaling: Design for horizontal scaling across multiple nodes
- Load Balancing: Implement proper load balancing mechanisms
- Auto-Scaling: Use auto-scaling based on workload demands
- Queue Management: Implement efficient queue management for task distribution
- Data Partitioning: Use data partitioning for large-scale processing
- Caching Strategies: Implement multi-level caching strategies
Troubleshooting¶
Common Workflow Issues¶
Workflow Execution Failures¶
Issue: Workflow execution fails at specific task
Solution: Check task logs, validate input data, verify resource availability, review error handling
Performance Bottlenecks¶
Issue: Workflow execution is slow
Solution: Profile execution, optimize resource allocation, review parallelization, check data volumes
Dependency Conflicts¶
Issue: Task dependencies causing deadlocks
Solution: Review dependency graph, implement proper ordering, use conditional execution
Monitoring Issues¶
Missing Metrics¶
Issue: Workflow metrics not being collected
Solution: Verify monitoring configuration, check metric collection agents, review logging setup
Alert Fatigue¶
Issue: Too many alerts generated
Solution: Tune alert thresholds, implement alert aggregation, review alert conditions
Dashboard Problems¶
Issue: Monitoring dashboard not updating
Solution: Check data pipeline, verify metric storage, review dashboard configuration
See Also¶
- Cloud Integration - Cloud deployment and integration
- Data Processing - Data processing pipeline
- API Reference - Workflow orchestration API
- Tutorials - Workflow automation tutorials