Data Processing Pipeline¶
OpenML Crawler provides a comprehensive data processing pipeline that transforms raw data from various sources into clean, structured, and analysis-ready datasets. The pipeline handles data validation, cleaning, transformation, enrichment, and quality assurance.
Pipeline Architecture¶
The data processing pipeline consists of several interconnected stages that work together to ensure data quality and consistency:
graph TD
A[Data Ingestion] --> B[Data Validation]
B --> C[Data Cleaning]
C --> D[Data Transformation]
D --> E[Data Enrichment]
E --> F[Data Quality Assurance]
F --> G[Data Storage]
G --> H[Data Export]
Core Components¶
- Data Ingestion: Collects data from various sources and formats
- Data Validation: Ensures data meets quality and consistency standards
- Data Cleaning: Removes errors, duplicates, and inconsistencies
- Data Transformation: Converts data into desired formats and structures
- Data Enrichment: Adds additional context and derived features
- Data Quality Assurance: Validates processed data against quality metrics
- Data Storage: Persists processed data in appropriate formats
- Data Export: Makes data available for analysis and consumption
Data Ingestion¶
Source Connectors¶
The pipeline integrates with all OpenML Crawler connectors to ingest data from diverse sources:
from openmlcrawler.processing import DataIngestionPipeline
pipeline = DataIngestionPipeline()
# Ingest data from multiple sources
sources = [
{"type": "weather", "source": "openweather", "location": "New York"},
{"type": "finance", "source": "alphavantage", "symbol": "AAPL"},
{"type": "social", "source": "twitter", "query": "#machinelearning"},
{"type": "news", "source": "newsapi", "category": "technology"}
]
ingested_data = pipeline.ingest_from_sources(
sources=sources,
date_range=("2023-01-01", "2023-12-31"),
batch_size=1000
)
File Format Support¶
The pipeline supports various input formats:
- Structured Data: CSV, JSON, XML, Parquet, Avro
- Semi-structured Data: HTML, XML, JSON Lines
- Unstructured Data: Text files, logs, documents
- Binary Data: Images, audio, video (metadata extraction)
- Database Data: SQL query results, NoSQL documents
from openmlcrawler.processing import FileProcessor
processor = FileProcessor()
# Process different file formats
csv_data = processor.process_csv("data/sales.csv", delimiter=",")
json_data = processor.process_json("data/api_response.json")
xml_data = processor.process_xml("data/config.xml")
parquet_data = processor.process_parquet("data/analytics.parquet")
Streaming Data¶
For real-time data processing:
from openmlcrawler.processing import StreamingProcessor
processor = StreamingProcessor()
# Process streaming data
@processor.stream_handler
def process_stream_data(data_batch):
# Process each batch of streaming data
cleaned_data = processor.clean_batch(data_batch)
transformed_data = processor.transform_batch(cleaned_data)
return transformed_data
# Start streaming pipeline
processor.start_streaming(
sources=["kafka_topic", "websocket_feed"],
batch_size=100,
window_seconds=60
)
Data Validation¶
Schema Validation¶
Validate data against predefined schemas:
from openmlcrawler.processing import SchemaValidator
validator = SchemaValidator()
# Define data schema
schema = {
"type": "object",
"properties": {
"id": {"type": "integer"},
"name": {"type": "string", "minLength": 1},
"price": {"type": "number", "minimum": 0},
"category": {"type": "string", "enum": ["A", "B", "C"]},
"timestamp": {"type": "string", "format": "date-time"}
},
"required": ["id", "name", "price"]
}
# Validate data against schema
validation_result = validator.validate_data(
data=input_data,
schema=schema,
strict_mode=True
)
# Get validation report
report = validator.generate_validation_report(validation_result)
Data Type Validation¶
Ensure data types match expected formats:
from openmlcrawler.processing import TypeValidator
type_validator = TypeValidator()
# Define type mappings
type_mappings = {
"id": "int64",
"name": "string",
"price": "float64",
"date": "datetime64[ns]",
"active": "boolean"
}
# Validate and convert data types
validated_data = type_validator.validate_types(
data=input_data,
type_mappings=type_mappings,
convert_types=True,
handle_errors="coerce" # or "raise" or "ignore"
)
Business Rule Validation¶
Apply domain-specific business rules:
from openmlcrawler.processing import BusinessRuleValidator
rule_validator = BusinessRuleValidator()
# Define business rules
rules = [
{
"name": "price_range",
"condition": "price > 0 and price < 10000",
"action": "flag",
"severity": "error"
},
{
"name": "date_future",
"condition": "timestamp <= current_date",
"action": "correct",
"correction": "set_to_current_date"
},
{
"name": "category_valid",
"condition": "category in ['A', 'B', 'C', 'D']",
"action": "reject",
"severity": "warning"
}
]
# Apply business rules
validated_data = rule_validator.apply_rules(
data=input_data,
rules=rules,
fail_fast=False # Continue processing even if some rules fail
)
Data Cleaning¶
Missing Value Handling¶
Handle missing values with various strategies:
from openmlcrawler.processing import MissingValueHandler
handler = MissingValueHandler()
# Different strategies for missing values
strategies = {
"numeric_column": "mean", # mean, median, mode, constant
"categorical_column": "mode", # mode, constant, drop
"date_column": "interpolate", # interpolate, forward_fill, backward_fill
"text_column": "empty_string" # empty_string, drop
}
# Handle missing values
cleaned_data = handler.handle_missing_values(
data=input_data,
strategies=strategies,
threshold=0.5 # Drop columns with >50% missing values
)
Duplicate Removal¶
Remove duplicate records:
from openmlcrawler.processing import DuplicateRemover
remover = DuplicateRemover()
# Remove exact duplicates
deduplicated_data = remover.remove_exact_duplicates(
data=input_data,
keep="first" # first, last, none
)
# Remove near-duplicates (fuzzy matching)
fuzzy_deduplicated = remover.remove_fuzzy_duplicates(
data=input_data,
similarity_threshold=0.9,
columns=["name", "description"],
method="levenshtein" # levenshtein, jaccard, cosine
)
Outlier Detection and Treatment¶
Identify and handle outliers:
from openmlcrawler.processing import OutlierDetector
detector = OutlierDetector()
# Statistical outlier detection
outliers = detector.detect_statistical_outliers(
data=input_data,
method="iqr", # iqr, zscore, isolation_forest, local_outlier_factor
columns=["price", "quantity"],
threshold=1.5
)
# Handle outliers
cleaned_data = detector.handle_outliers(
data=input_data,
outliers=outliers,
method="cap", # cap, remove, impute
cap_values={"price": [10, 1000], "quantity": [1, 100]}
)
Text Data Cleaning¶
Clean and normalize text data:
from openmlcrawler.processing import TextCleaner
text_cleaner = TextCleaner()
# Clean text data
cleaned_text = text_cleaner.clean_text(
text_data=input_data["description"],
operations=[
"remove_html",
"remove_urls",
"remove_emails",
"normalize_whitespace",
"remove_punctuation",
"lowercase",
"remove_stopwords",
"lemmatize"
],
language="english"
)
Data Transformation¶
Data Normalization¶
Normalize data to common scales:
from openmlcrawler.processing import DataNormalizer
normalizer = DataNormalizer()
# Different normalization methods
normalized_data = normalizer.normalize(
data=input_data,
columns=["price", "quantity", "rating"],
method="minmax", # minmax, zscore, robust, maxabs, l1, l2
feature_range=(0, 1)
)
Encoding Categorical Variables¶
Convert categorical variables to numerical:
from openmlcrawler.processing import CategoricalEncoder
encoder = CategoricalEncoder()
# Label encoding
label_encoded = encoder.label_encode(
data=input_data,
columns=["category", "status"]
)
# One-hot encoding
onehot_encoded = encoder.onehot_encode(
data=input_data,
columns=["category", "region"],
drop_first=True,
handle_unknown="ignore"
)
# Target encoding
target_encoded = encoder.target_encode(
data=input_data,
columns=["category"],
target="sales",
smoothing=1.0
)
Feature Engineering¶
Create new features from existing data:
from openmlcrawler.processing import FeatureEngineer
engineer = FeatureEngineer()
# Create temporal features
temporal_features = engineer.create_temporal_features(
data=input_data,
date_column="timestamp",
features=[
"hour", "day", "month", "year",
"day_of_week", "week_of_year",
"is_weekend", "is_holiday"
]
)
# Create interaction features
interaction_features = engineer.create_interaction_features(
data=input_data,
columns=["price", "quantity"],
interactions=["multiply", "divide", "add", "subtract"]
)
# Create aggregation features
agg_features = engineer.create_aggregation_features(
data=input_data,
groupby_columns=["category", "region"],
agg_functions=["mean", "std", "min", "max", "count"]
)
Data Reshaping¶
Reshape data for different analysis needs:
from openmlcrawler.processing import DataReshaper
reshaper = DataReshaper()
# Pivot data
pivoted_data = reshaper.pivot_data(
data=input_data,
index=["date", "category"],
columns="region",
values="sales",
aggfunc="sum"
)
# Melt data
melted_data = reshaper.melt_data(
data=input_data,
id_vars=["id", "name"],
value_vars=["q1_sales", "q2_sales", "q3_sales", "q4_sales"],
var_name="quarter",
value_name="sales"
)
# Transpose data
transposed_data = reshaper.transpose_data(
data=input_data,
index_column="id"
)
Data Enrichment¶
External Data Integration¶
Enrich data with external sources:
from openmlcrawler.processing import DataEnricher
enricher = DataEnricher()
# Enrich with geographic data
geo_enriched = enricher.enrich_geographic(
data=input_data,
location_column="address",
enrichments=[
"coordinates",
"country_code",
"timezone",
"population_density"
]
)
# Enrich with demographic data
demo_enriched = enricher.enrich_demographic(
data=input_data,
location_data=geo_enriched,
enrichments=[
"age_distribution",
"income_level",
"education_level"
]
)
# Enrich with weather data
weather_enriched = enricher.enrich_weather(
data=input_data,
date_column="timestamp",
location_column="coordinates",
weather_features=[
"temperature",
"humidity",
"precipitation",
"wind_speed"
]
)
Derived Features¶
Create calculated features:
from openmlcrawler.processing import FeatureDeriver
deriver = FeatureDeriver()
# Create calculated features
derived_features = deriver.derive_features(
data=input_data,
derivations=[
{
"name": "profit_margin",
"expression": "(revenue - cost) / revenue",
"data_type": "float64"
},
{
"name": "days_since_purchase",
"expression": "current_date - purchase_date",
"data_type": "int64"
},
{
"name": "customer_segment",
"expression": "CASE WHEN total_spent > 1000 THEN 'High' WHEN total_spent > 500 THEN 'Medium' ELSE 'Low' END",
"data_type": "category"
}
]
)
Data Linking¶
Link data across different sources:
from openmlcrawler.processing import DataLinker
linker = DataLinker()
# Fuzzy matching
linked_data = linker.fuzzy_link(
left_data=customers,
right_data=transactions,
left_key="customer_name",
right_key="buyer_name",
similarity_threshold=0.8,
method="levenshtein"
)
# Exact matching with preprocessing
exact_linked = linker.exact_link(
left_data=products,
right_data=inventory,
left_key="product_id",
right_key="sku",
preprocess_keys=True
)
# Probabilistic linking
probabilistic_linked = linker.probabilistic_link(
left_data=dataset1,
right_data=dataset2,
linking_variables=[
{"name": "name", "method": "jaccard", "threshold": 0.7},
{"name": "address", "method": "levenshtein", "threshold": 0.8}
],
match_threshold=0.6
)
Data Quality Assurance¶
Quality Metrics¶
Monitor data quality metrics:
from openmlcrawler.processing import QualityAssurance
qa = QualityAssurance()
# Calculate quality metrics
quality_metrics = qa.calculate_metrics(
data=processed_data,
metrics=[
"completeness",
"accuracy",
"consistency",
"timeliness",
"validity",
"uniqueness"
]
)
# Generate quality report
quality_report = qa.generate_quality_report(
metrics=quality_metrics,
thresholds={
"completeness": 0.95,
"accuracy": 0.98,
"consistency": 0.90
}
)
Data Profiling¶
Profile data to understand its characteristics:
from openmlcrawler.processing import DataProfiler
profiler = DataProfiler()
# Generate data profile
profile = profiler.profile_data(
data=input_data,
include_statistics=True,
include_distributions=True,
include_correlations=True,
sample_size=10000
)
# Detect data quality issues
issues = profiler.detect_issues(
data=input_data,
profile=profile,
issue_types=[
"missing_values",
"outliers",
"inconsistencies",
"data_type_mismatches"
]
)
Automated Quality Checks¶
Set up automated quality monitoring:
from openmlcrawler.processing import QualityMonitor
monitor = QualityMonitor()
# Define quality rules
quality_rules = [
{
"name": "no_null_ids",
"check": "data['id'].notnull().all()",
"severity": "error"
},
{
"name": "price_range",
"check": "(data['price'] >= 0).all() and (data['price'] <= 10000).all()",
"severity": "warning"
},
{
"name": "date_validity",
"check": "pd.to_datetime(data['date'], errors='coerce').notnull().all()",
"severity": "error"
}
]
# Run quality checks
check_results = monitor.run_checks(
data=input_data,
rules=quality_rules,
fail_fast=False
)
# Alert on quality issues
monitor.alert_on_issues(
results=check_results,
alert_methods=["email", "slack", "dashboard"],
alert_thresholds={"error": 0, "warning": 5}
)
Pipeline Orchestration¶
Workflow Definition¶
Define complex processing workflows:
from openmlcrawler.processing import PipelineOrchestrator
orchestrator = PipelineOrchestrator()
# Define processing workflow
workflow = {
"name": "customer_analytics_pipeline",
"steps": [
{
"name": "ingest_customer_data",
"type": "ingestion",
"sources": ["crm_database", "web_analytics"],
"output": "raw_customers"
},
{
"name": "validate_customer_data",
"type": "validation",
"input": "raw_customers",
"schema": "customer_schema.json",
"output": "validated_customers"
},
{
"name": "clean_customer_data",
"type": "cleaning",
"input": "validated_customers",
"operations": ["remove_duplicates", "handle_missing"],
"output": "clean_customers"
},
{
"name": "enrich_customer_data",
"type": "enrichment",
"input": "clean_customers",
"enrichments": ["geographic", "demographic"],
"output": "enriched_customers"
}
],
"error_handling": "continue",
"logging": "detailed"
}
# Execute workflow
result = orchestrator.execute_workflow(workflow)
Parallel Processing¶
Process data in parallel for better performance:
from openmlcrawler.processing import ParallelProcessor
parallel_processor = ParallelProcessor()
# Process data in parallel
results = parallel_processor.process_parallel(
data=input_data,
operations=[
{"name": "clean_text", "function": clean_text_columns},
{"name": "normalize_numeric", "function": normalize_numeric_columns},
{"name": "encode_categorical", "function": encode_categorical_columns}
],
num_workers=4,
chunk_size=1000
)
Conditional Processing¶
Apply different processing based on conditions:
from openmlcrawler.processing import ConditionalProcessor
conditional_processor = ConditionalProcessor()
# Define conditional processing rules
rules = [
{
"condition": "data['data_type'] == 'sales'",
"operations": [
"validate_sales_schema",
"clean_sales_data",
"aggregate_sales"
]
},
{
"condition": "data['data_type'] == 'inventory'",
"operations": [
"validate_inventory_schema",
"update_stock_levels",
"calculate_reorder_points"
]
},
{
"condition": "data['source'] == 'api'",
"operations": [
"validate_api_response",
"flatten_nested_data",
"standardize_formats"
]
}
]
# Apply conditional processing
processed_data = conditional_processor.apply_conditional_processing(
data=input_data,
rules=rules
)
Configuration and Monitoring¶
Pipeline Configuration¶
Configure pipeline behavior:
data_processing:
pipeline:
name: "main_processing_pipeline"
version: "1.0.0"
stages:
- ingestion
- validation
- cleaning
- transformation
- enrichment
- quality_assurance
validation:
strict_mode: true
fail_on_error: false
error_threshold: 0.05
cleaning:
missing_value_strategy: "interpolate"
outlier_method: "iqr"
duplicate_handling: "keep_first"
transformation:
normalization_method: "zscore"
encoding_method: "onehot"
feature_engineering: true
monitoring:
enable_metrics: true
log_level: "INFO"
alert_on_errors: true
Performance Monitoring¶
Monitor pipeline performance:
from openmlcrawler.processing import PipelineMonitor
monitor = PipelineMonitor()
# Monitor pipeline execution
execution_metrics = monitor.monitor_execution(
pipeline_result=result,
metrics=[
"execution_time",
"memory_usage",
"cpu_usage",
"error_rate",
"throughput"
]
)
# Generate performance report
performance_report = monitor.generate_performance_report(
metrics=execution_metrics,
time_range="last_24h",
include_charts=True
)
# Set up alerts
monitor.setup_alerts(
conditions=[
{"metric": "error_rate", "operator": ">", "value": 0.1, "action": "alert"},
{"metric": "execution_time", "operator": ">", "value": 3600, "action": "notify"}
]
)
Best Practices¶
Data Quality¶
- Validate Early: Implement validation at the earliest possible stage
- Fail Fast: Stop processing when critical data quality issues are detected
- Monitor Continuously: Set up continuous monitoring of data quality metrics
- Document Issues: Maintain detailed logs of data quality issues and resolutions
- Automate Remediation: Implement automated fixes for common data quality issues
Performance Optimization¶
- Parallel Processing: Use parallel processing for independent operations
- Memory Management: Monitor and optimize memory usage for large datasets
- Caching: Cache intermediate results to avoid redundant computations
- Batch Processing: Process data in optimal batch sizes
- Resource Allocation: Allocate appropriate resources based on data volume
Error Handling¶
- Graceful Degradation: Continue processing when non-critical errors occur
- Detailed Logging: Log all errors with sufficient context for debugging
- Retry Logic: Implement retry logic for transient failures
- Circuit Breakers: Use circuit breakers to prevent cascade failures
- Fallback Strategies: Define fallback strategies for critical failures
Maintainability¶
- Modular Design: Break down complex pipelines into smaller, manageable components
- Configuration Management: Externalize configuration to make pipelines adaptable
- Version Control: Version control pipeline definitions and configurations
- Documentation: Document pipeline logic, dependencies, and maintenance procedures
- Testing: Implement comprehensive testing for pipeline components
Troubleshooting¶
Common Issues¶
Memory Errors¶
Error: Out of memory during processing
Solution: Reduce batch sizes, use streaming processing, or increase memory allocation
Data Type Mismatches¶
Error: Data type validation failed
Solution: Check source data types, update type mappings, or implement type conversion
Performance Degradation¶
Error: Pipeline execution time increased significantly
Solution: Profile pipeline performance, optimize bottlenecks, or scale resources
Data Quality Issues¶
Error: Data quality metrics below threshold
Solution: Review data sources, update validation rules, or implement data cleaning
See Also¶
- Connectors Overview - Data source connectors
- Quality & Privacy - Data quality and privacy controls
- Workflow Orchestration - Orchestrating complex workflows
- API Reference - Processing pipeline API
- Tutorials - Advanced processing tutorials