Skip to content

Health Data Connectors

OpenML Crawler provides specialized health data connectors that access medical, clinical, and public health data from various authoritative sources. These connectors handle sensitive health information with proper privacy controls and compliance measures.

Supported Health Data Sources

CDC (Centers for Disease Control and Prevention)

Official US public health data from the Centers for Disease Control and Prevention.

Features:

  • Disease surveillance data
  • Vaccination statistics
  • Health outcome metrics
  • Demographic health data
  • Environmental health indicators
  • Injury and violence data
  • Chronic disease statistics

Usage:

from openmlcrawler.connectors.health import CDCConnector

connector = CDCConnector()

# Get disease surveillance data
surveillance_data = connector.get_disease_data(
    disease="COVID-19",
    geography="United States",
    date_range=("2020-01-01", "2023-12-31")
)

# Get vaccination statistics
vaccination_data = connector.get_vaccination_data(
    vaccine_type="COVID-19",
    geography="states",
    date_range=("2021-01-01", "2023-12-31")
)

# Get health outcome metrics
outcomes = connector.get_health_outcomes(
    indicators=["mortality", "morbidity"],
    demographics=["age", "gender", "race"]
)

WHO (World Health Organization)

Global health data and statistics from the World Health Organization.

Features:

  • Global health indicators
  • Disease outbreak data
  • Health system performance
  • Mortality and morbidity statistics
  • Environmental health data
  • Health workforce data
  • Universal health coverage metrics

Configuration:

connectors:
  health:
    who:
      base_url: "https://ghoapi.who.int/api"
      format: "json"
      language: "en"
      cache_enabled: true

Usage:

from openmlcrawler.connectors.health import WHOConnector

connector = WHOConnector()

# Get global health indicators
indicators = connector.get_health_indicators(
    indicator_codes=["WHOSIS_000001", "WHOSIS_000002"],
    countries=["USA", "GBR", "DEU"],
    year_range=(2015, 2023)
)

# Get disease outbreak data
outbreaks = connector.get_outbreak_data(
    disease="Ebola",
    region="AFRICA",
    date_range=("2014-01-01", "2023-12-31")
)

# Get health system data
health_systems = connector.get_health_system_data(
    countries=["USA", "CAN", "GBR"],
    indicators=["health_expenditure", "physicians_per_1000"]
)

PubMed

Medical research literature from the National Library of Medicine's PubMed database.

Features:

  • Medical research articles
  • Clinical trial data
  • Systematic reviews
  • Meta-analyses
  • Case studies
  • Medical guidelines
  • Drug information

Usage:

from openmlcrawler.connectors.health import PubMedConnector

connector = PubMedConnector(api_key="your_key", email="your_email")

# Search medical literature
articles = connector.search_articles(
    query="machine learning AND medical diagnosis",
    max_results=100,
    date_range=("2020/01/01", "2023/12/31")
)

# Get article details
article_details = connector.get_article_details(
    pmids=["12345678", "87654321"]
)

# Search clinical trials
trials = connector.search_clinical_trials(
    condition="diabetes",
    intervention="machine learning",
    status="completed"
)

# Get systematic reviews
reviews = connector.get_systematic_reviews(
    topic="AI in healthcare",
    max_results=50
)

ClinicalTrials.gov

Clinical trial registry maintained by the US National Library of Medicine.

Features:

  • Clinical trial protocols
  • Trial status and results
  • Patient recruitment data
  • Study designs and outcomes
  • Investigator information
  • Sponsor details
  • Regulatory information

Usage:

from openmlcrawler.connectors.health import ClinicalTrialsConnector

connector = ClinicalTrialsConnector()

# Search clinical trials
trials = connector.search_trials(
    condition="cancer",
    intervention="immunotherapy",
    status="Recruiting",
    max_results=100
)

# Get trial details
trial_details = connector.get_trial_details(
    nct_ids=["NCT12345678", "NCT87654321"]
)

# Get recruitment data
recruitment = connector.get_recruitment_data(
    condition="COVID-19",
    location="United States"
)

# Search by sponsor
sponsor_trials = connector.search_by_sponsor(
    sponsor="Pfizer",
    condition="COVID-19"
)

Data Types and Categories

Public Health Data

Category Description Sources Update Frequency
Disease Surveillance Outbreak tracking and monitoring CDC, WHO Daily/Weekly
Vital Statistics Births, deaths, life expectancy CDC, WHO Monthly/Yearly
Health Behaviors Smoking, diet, exercise patterns CDC Annual
Health Outcomes Disease incidence and prevalence CDC, WHO Quarterly
Healthcare Access Insurance coverage, provider access CDC Annual
Environmental Health Air/water quality health impacts CDC, WHO Monthly

Clinical Research Data

  • Clinical Trials: Study protocols, results, and outcomes
  • Medical Literature: Research articles, reviews, and meta-analyses
  • Drug Information: Medication data, interactions, and approvals
  • Medical Devices: Device approvals, recalls, and safety data
  • Healthcare Quality: Hospital performance and patient outcomes
  • Health Economics: Cost-effectiveness and resource allocation

Genomic and Biomarker Data

  • Genetic Data: Gene variants and associations
  • Biomarker Data: Diagnostic and prognostic markers
  • Pharmacogenomics: Genetic factors in drug response
  • Rare Diseases: Orphan disease data and research
  • Population Genomics: Large-scale genetic studies

Data Collection Strategies

Public Health Surveillance

from openmlcrawler.connectors.health import HealthSurveillanceCollector

collector = HealthSurveillanceCollector()

# Collect disease surveillance data
surveillance_data = collector.collect_surveillance_data(
    diseases=["COVID-19", "Influenza", "Ebola"],
    regions=["GLOBAL", "AMERICA", "EUROPE"],
    date_range=("2020-01-01", "2023-12-31")
)

# Monitor health indicators
indicators = collector.monitor_health_indicators(
    indicators=["mortality_rate", "vaccination_coverage"],
    countries=["USA", "CAN", "MEX"],
    frequency="weekly"
)

# Generate health reports
reports = collector.generate_health_reports(
    data=surveillance_data,
    report_types=["epidemiological", "trends", "forecasts"]
)

Collecting Clinical Research Data

from openmlcrawler.connectors.health import ClinicalResearchCollector

collector = ClinicalResearchCollector()

# Collect clinical trial data
trial_data = collector.collect_trial_data(
    conditions=["cancer", "diabetes", "cardiovascular"],
    phases=["Phase 2", "Phase 3", "Phase 4"],
    status=["Completed", "Recruiting"],
    max_results=1000
)

# Collect medical literature
literature = collector.collect_medical_literature(
    topics=["machine learning", "AI", "deep learning"],
    publication_types=["systematic review", "randomized trial"],
    date_range=("2020-01-01", "2023-12-31")
)

# Analyze research trends
trends = collector.analyze_research_trends(
    data=literature,
    analysis_types=["publication_trends", "collaboration_networks"]
)

Batch Processing

from openmlcrawler.connectors.health import BatchHealthProcessor

processor = BatchHealthProcessor()

# Process multiple health data sources
results = processor.process_batch(
    sources=["cdc", "who", "pubmed"],
    categories=["surveillance", "clinical_trials", "literature"],
    date_range=("2020-01-01", "2023-12-31"),
    output_format="parquet"
)

Privacy and Compliance

HIPAA Compliance

Health Insurance Portability and Accountability Act compliance for US health data.

from openmlcrawler.connectors.health import HIPAACompliantConnector

connector = HIPAACompliantConnector(
    enable_deidentification=True,
    audit_logging=True,
    access_controls=True
)

# Collect HIPAA-compliant data
compliant_data = connector.collect_hipaa_compliant(
    data_sources=["clinical_trials", "medical_records"],
    deidentification_level="safe_harbor",
    purpose="research"
)

# Audit data access
audit_log = connector.get_audit_log(
    date_range=("2023-01-01", "2023-12-31"),
    user_id="researcher_123"
)

GDPR Compliance

General Data Protection Regulation compliance for EU health data.

from openmlcrawler.connectors.health import GDPRCompliantConnector

connector = GDPRCompliantConnector(
    enable_consent_management=True,
    data_minimization=True,
    retention_limits=True
)

# Collect GDPR-compliant data
gdpr_data = connector.collect_gdpr_compliant(
    data_sources=["who", "eu_health_systems"],
    consent_verified=True,
    processing_purpose="public_health_research"
)

# Manage data subject rights
rights_response = connector.handle_data_subject_request(
    request_type="access",
    subject_id="patient_456",
    justification="medical_research"
)

Data De-identification

from openmlcrawler.connectors.health import HealthDataDeidentifier

deidentifier = HealthDataDeidentifier()

# De-identify health data
deidentified_data = deidentifier.deidentify_data(
    data=health_data,
    methods=[
        "remove_direct_identifiers",
        "generalize_dates",
        "mask_sensitive_values"
    ],
    risk_threshold="very_low"
)

# Validate de-identification
validation = deidentifier.validate_deidentification(
    original_data=health_data,
    deidentified_data=deidentified_data,
    reidentification_risk_threshold=0.0001
)

Data Quality and Validation

Quality Assurance

  1. Source Verification: Validate data source authenticity and authority
  2. Data Completeness: Check for missing values and data gaps
  3. Temporal Consistency: Verify chronological data ordering
  4. Cross-Source Validation: Compare data across multiple authoritative sources
  5. Statistical Validation: Check for outliers and data anomalies

Validation Framework

from openmlcrawler.connectors.health import HealthDataValidator

validator = HealthDataValidator()

# Validate health data
validation_result = validator.validate_health_data(
    data=health_data,
    checks=[
        "source_authority",
        "data_completeness",
        "temporal_consistency",
        "statistical_validity",
        "privacy_compliance"
    ]
)

# Generate quality report
quality_report = validator.generate_quality_report(
    validation_results=validation_result,
    include_recommendations=True,
    compliance_frameworks=["HIPAA", "GDPR"]
)

Integration with ML Pipelines

Disease Prediction Models

from openmlcrawler.connectors.health import DiseasePredictionPipeline

pipeline = DiseasePredictionPipeline()

# Build prediction model
model = pipeline.build_prediction_model(
    training_data=surveillance_data,
    target_diseases=["COVID-19", "Influenza"],
    features=[
        "demographic_data",
        "environmental_factors",
        "healthcare_capacity",
        "vaccination_rates"
    ],
    model_type="xgboost"
)

# Generate predictions
predictions = pipeline.generate_predictions(
    model=model,
    input_data=current_data,
    prediction_horizon=30,  # days
    confidence_intervals=True
)

# Validate predictions
validation = pipeline.validate_predictions(
    predictions=predictions,
    actual_data=validation_data,
    metrics=["accuracy", "precision", "recall", "auc"]
)

Clinical Trial Analysis

from openmlcrawler.connectors.health import ClinicalTrialAnalyzer

analyzer = ClinicalTrialAnalyzer()

# Analyze trial outcomes
outcomes = analyzer.analyze_trial_outcomes(
    trial_data=clinical_trials,
    outcome_measures=[
        "efficacy",
        "safety",
        "adverse_events",
        "patient_reported_outcomes"
    ]
)

# Identify successful interventions
successful_trials = analyzer.identify_successful_interventions(
    trials=outcomes,
    success_criteria={
        "efficacy_threshold": 0.7,
        "safety_threshold": 0.8,
        "sample_size_min": 100
    }
)

# Generate research insights
insights = analyzer.generate_research_insights(
    trial_data=outcomes,
    insight_types=[
        "treatment_effectiveness",
        "adverse_event_patterns",
        "patient_subgroup_analysis"
    ]
)

Configuration Options

Global Configuration

health_connectors:
  default_sources: ["cdc", "who"]
  privacy_compliance:
    enable_hipaa: true
    enable_gdpr: true
    deidentification_required: true
  data_quality:
    enable_validation: true
    strict_mode: true
    authority_check: true
  caching:
    enable_cache: true
    cache_ttl_hours: 6
    max_cache_size_gb: 50
  rate_limiting:
    requests_per_minute: 30
    burst_limit: 10

Source-Specific Settings

cdc:
  base_url: "https://data.cdc.gov"
  api_key: "${CDC_API_KEY}"
  format: "json"
  timeout_seconds: 30

who:
  base_url: "https://ghoapi.who.int/api"
  format: "json"
  language: "en"
  cache_enabled: true

pubmed:
  api_key: "${PUBMED_API_KEY}"
  email: "${PUBMED_EMAIL}"
  tool: "OpenMLCrawler"
  max_results_per_query: 100

clinicaltrials:
  base_url: "https://clinicaltrials.gov/api"
  format: "json"
  timeout_seconds: 30
  max_results: 1000

Best Practices

Data Privacy and Security

  1. De-identification: Always de-identify personal health information
  2. Access Controls: Implement strict access controls and audit logging
  3. Data Minimization: Collect only necessary health data fields
  4. Retention Limits: Implement data retention policies
  5. Secure Transmission: Use encrypted connections for data transfer

Data Quality Management

  1. Source Verification: Use only authoritative health data sources
  2. Cross-Validation: Validate data against multiple sources
  3. Regular Updates: Monitor data freshness and update frequencies
  4. Error Detection: Implement automated error detection and correction
  5. Documentation: Maintain comprehensive data lineage and metadata

Performance Optimization

  1. Intelligent Caching: Cache health data appropriately (short TTL)
  2. Batch Processing: Use batch operations for large datasets
  3. Selective Queries: Query only required data fields and time ranges
  4. Rate Limiting: Respect API rate limits and implement backoff strategies
  5. Data Compression: Compress large health datasets for storage

Troubleshooting

Common Issues

Privacy Compliance

Error: Data privacy violation
Solution: Implement proper de-identification and access controls

Data Access Restrictions

Error: Access denied to health data
Solution: Obtain proper authorization and credentials

Data Quality Issues

Error: Health data validation failed
Solution: Verify data sources and implement quality checks

API Rate Limiting

Error: API rate limit exceeded
Solution: Implement rate limiting and exponential backoff

See Also