Cloud Integration¶
OpenML Crawler provides comprehensive cloud integration capabilities, enabling seamless deployment and operation across major cloud platforms. The system supports hybrid and multi-cloud architectures with automated scaling, monitoring, and cost optimization.
Cloud Storage Integration¶
Amazon S3¶
Integration with Amazon Simple Storage Service:
from openmlcrawler.cloud import S3Integration
s3 = S3Integration()
# Configure S3 connection
s3.configure(
region="us-east-1",
access_key_id="${AWS_ACCESS_KEY_ID}",
secret_access_key="${AWS_SECRET_ACCESS_KEY}",
default_bucket="openml-data-bucket"
)
# Upload data to S3
upload_result = s3.upload_data(
data=input_data,
bucket="openml-data-bucket",
key="processed/customer_data_2023.parquet",
compression="snappy",
encryption="AES256"
)
# Download data from S3
download_result = s3.download_data(
bucket="openml-data-bucket",
key="raw/weather_data_2023.json",
local_path="/tmp/weather_data.json"
)
# List S3 objects
objects = s3.list_objects(
bucket="openml-data-bucket",
prefix="processed/",
max_keys=1000
)
# S3 data streaming
stream = s3.stream_data(
bucket="openml-data-bucket",
key="large_dataset.csv",
chunk_size=1024*1024 # 1MB chunks
)
Google Cloud Storage¶
Integration with Google Cloud Storage:
from openmlcrawler.cloud import GCSIntegration
gcs = GCSIntegration()
# Configure GCS connection
gcs.configure(
project_id="openml-project",
credentials_path="/path/to/service-account.json",
default_bucket="openml-data-bucket"
)
# Upload data to GCS
upload_result = gcs.upload_data(
data=input_data,
bucket="openml-data-bucket",
blob_name="processed/sales_data_2023.avro",
content_type="application/avro",
metadata={"processed_date": "2023-12-01", "version": "1.0"}
)
# Download data from GCS
download_result = gcs.download_data(
bucket="openml-data-bucket",
blob_name="raw/financial_data.csv",
local_path="/tmp/financial_data.csv"
)
# GCS signed URLs
signed_url = gcs.generate_signed_url(
bucket="openml-data-bucket",
blob_name="public_dataset.json",
expiration_minutes=60,
method="GET"
)
Azure Blob Storage¶
Integration with Azure Blob Storage:
from openmlcrawler.cloud import AzureBlobIntegration
azure = AzureBlobIntegration()
# Configure Azure connection
azure.configure(
account_name="${AZURE_STORAGE_ACCOUNT}",
account_key="${AZURE_STORAGE_KEY}",
container_name="openml-data"
)
# Upload data to Azure Blob
upload_result = azure.upload_data(
data=input_data,
container="openml-data",
blob_name="processed/health_data_2023.parquet",
content_settings={
"content_type": "application/octet-stream",
"content_encoding": "gzip"
}
)
# Download data from Azure Blob
download_result = azure.download_data(
container="openml-data",
blob_name="raw/social_media_data.json",
local_path="/tmp/social_data.json"
)
# Azure Blob leasing
lease = azure.acquire_lease(
container="openml-data",
blob_name="locked_dataset.parquet",
lease_duration=60 # seconds
)
Cloud Computing Services¶
AWS Lambda¶
Serverless data processing with AWS Lambda:
from openmlcrawler.cloud import LambdaIntegration
lambda_integration = LambdaIntegration()
# Deploy data processing function
function_arn = lambda_integration.deploy_function(
function_name="openml-data-processor",
runtime="python3.9",
handler="lambda_function.lambda_handler",
code_path="./lambda_code.zip",
environment={
"ENVIRONMENT": "production",
"LOG_LEVEL": "INFO"
},
memory_size=1024, # MB
timeout=300 # seconds
)
# Invoke Lambda function
result = lambda_integration.invoke_function(
function_name="openml-data-processor",
payload={
"data_source": "s3://bucket/input.json",
"output_destination": "s3://bucket/output.parquet",
"processing_config": {"format": "parquet", "compression": "snappy"}
},
invocation_type="RequestResponse" # or "Event" for async
)
# Lambda function URL
function_url = lambda_integration.create_function_url(
function_name="openml-data-processor",
auth_type="NONE", # or "AWS_IAM"
cors_enabled=True
)
Google Cloud Functions¶
Serverless processing with Google Cloud Functions:
from openmlcrawler.cloud import CloudFunctionsIntegration
gcf = CloudFunctionsIntegration()
# Deploy Cloud Function
function_name = gcf.deploy_function(
name="openml-data-processor",
runtime="python39",
entry_point="process_data",
source_path="./gcf_code.zip",
trigger="http", # or "pubsub", "storage"
environment_variables={
"PROJECT_ID": "openml-project",
"DATASET_ID": "processed_data"
},
memory=512, # MB
timeout=540 # seconds
)
# Invoke Cloud Function
result = gcf.invoke_function(
name="openml-data-processor",
data={
"input_bucket": "openml-input",
"output_bucket": "openml-output",
"file_pattern": "*.json"
}
)
# Cloud Function triggers
trigger = gcf.create_trigger(
function_name="openml-data-processor",
event_type="google.storage.object.finalize",
resource="projects/openml-project/buckets/openml-input"
)
Azure Functions¶
Serverless processing with Azure Functions:
from openmlcrawler.cloud import AzureFunctionsIntegration
azf = AzureFunctionsIntegration()
# Deploy Azure Function
function_app = azf.deploy_function_app(
name="openml-processor",
runtime="python",
runtime_version="3.9",
storage_account="${AZURE_STORAGE_ACCOUNT}",
plan_type="consumption" # or "premium", "dedicated"
)
# Deploy function
function_result = azf.deploy_function(
app_name="openml-processor",
function_name="data-processor",
code_path="./azf_code.zip",
trigger="http", # or "timer", "queue", "blob"
auth_level="anonymous"
)
# Invoke Azure Function
result = azf.invoke_function(
function_url="https://openml-processor.azurewebsites.net/api/data-processor",
method="POST",
data={
"container": "input-data",
"blob_pattern": "data_*.json",
"output_container": "processed-data"
}
)
Container Orchestration¶
Amazon ECS/Fargate¶
Containerized deployment on Amazon ECS:
from openmlcrawler.cloud import ECSIntegration
ecs = ECSIntegration()
# Create ECS cluster
cluster_arn = ecs.create_cluster(
cluster_name="openml-cluster",
capacity_providers=["FARGATE", "FARGATE_SPOT"]
)
# Register task definition
task_definition = ecs.register_task_definition(
family="openml-processor",
cpu="1024", # 1 vCPU
memory="2048", # 2 GB
execution_role_arn="${ECS_EXECUTION_ROLE}",
task_role_arn="${ECS_TASK_ROLE}",
container_definitions=[{
"name": "openml-container",
"image": "openml/crawler:latest",
"essential": True,
"environment": [
{"name": "ENVIRONMENT", "value": "production"},
{"name": "LOG_LEVEL", "value": "INFO"}
],
"logConfiguration": {
"logDriver": "awslogs",
"options": {
"awslogs-group": "/ecs/openml-processor",
"awslogs-region": "us-east-1"
}
}
}]
)
# Run ECS task
task_result = ecs.run_task(
cluster="openml-cluster",
task_definition="openml-processor",
launch_type="FARGATE",
network_configuration={
"awsvpcConfiguration": {
"subnets": ["subnet-12345", "subnet-67890"],
"securityGroups": ["sg-12345"]
}
}
)
Google Kubernetes Engine (GKE)¶
Kubernetes deployment on Google Cloud:
from openmlcrawler.cloud import GKEIntegration
gke = GKEIntegration()
# Create GKE cluster
cluster = gke.create_cluster(
name="openml-cluster",
location="us-central1",
node_pools=[{
"name": "default-pool",
"machine_type": "e2-medium",
"node_count": 3,
"autoscaling": {
"min_node_count": 1,
"max_node_count": 10
}
}]
)
# Deploy application
deployment = gke.deploy_application(
name="openml-crawler",
image="gcr.io/openml-project/crawler:latest",
replicas=3,
ports=[{"containerPort": 8080}],
env_vars={
"DATABASE_URL": "postgres://...",
"REDIS_URL": "redis://..."
},
resources={
"requests": {"memory": "512Mi", "cpu": "500m"},
"limits": {"memory": "1Gi", "cpu": "1000m"}
}
)
# Create service
service = gke.create_service(
name="openml-service",
type="LoadBalancer",
ports=[{"port": 80, "targetPort": 8080}],
selector={"app": "openml-crawler"}
)
Azure Kubernetes Service (AKS)¶
Kubernetes deployment on Azure:
from openmlcrawler.cloud import AKSIntegration
aks = AKSIntegration()
# Create AKS cluster
cluster = aks.create_cluster(
name="openml-cluster",
location="East US",
resource_group="openml-rg",
node_pools=[{
"name": "default",
"node_count": 3,
"vm_size": "Standard_DS2_v2",
"enable_auto_scaling": True,
"min_count": 1,
"max_count": 10
}]
)
# Deploy to AKS
deployment = aks.deploy_application(
name="openml-crawler",
image="openml.azurecr.io/crawler:latest",
replicas=3,
ports=[8080],
environment_variables={
"AZURE_STORAGE_CONNECTION_STRING": "${STORAGE_CONNECTION}",
"DATABASE_CONNECTION": "${DB_CONNECTION}"
}
)
# Create ingress
ingress = aks.create_ingress(
name="openml-ingress",
rules=[{
"host": "api.openml.com",
"http": {
"paths": [{
"path": "/",
"pathType": "Prefix",
"backend": {
"service": {
"name": "openml-service",
"port": {"number": 80}
}
}
}]
}
}]
)
Cloud Database Integration¶
Amazon RDS¶
Integration with Amazon Relational Database Service:
from openmlcrawler.cloud import RDSIntegration
rds = RDSIntegration()
# Create RDS instance
instance = rds.create_instance(
db_instance_identifier="openml-db",
db_instance_class="db.t3.micro",
engine="postgres",
engine_version="13.7",
master_username="openml_user",
master_password="${DB_PASSWORD}",
allocated_storage=20,
db_name="openml"
)
# Connect to RDS
connection = rds.connect(
host=instance["endpoint"]["address"],
port=instance["endpoint"]["port"],
database="openml",
username="openml_user",
password="${DB_PASSWORD}"
)
# Execute queries
results = rds.execute_query(
connection=connection,
query="SELECT * FROM processed_data WHERE created_date > %s",
parameters=["2023-01-01"]
)
# Backup RDS instance
backup = rds.create_backup(
db_instance_identifier="openml-db",
backup_name="openml-backup-2023",
backup_retention_period=30
)
Google Cloud SQL¶
Integration with Google Cloud SQL:
from openmlcrawler.cloud import CloudSQLIntegration
cloudsql = CloudSQLIntegration()
# Create Cloud SQL instance
instance = cloudsql.create_instance(
name="openml-db",
database_version="POSTGRES_13",
region="us-central1",
settings={
"tier": "db-f1-micro",
"diskSize": 10, # GB
"backupConfiguration": {
"enabled": True,
"startTime": "03:00"
}
}
)
# Connect to Cloud SQL
connection = cloudsql.connect(
instance_name="openml-db",
database="openml",
username="openml_user",
password="${DB_PASSWORD}"
)
# Cloud SQL proxy
proxy = cloudsql.start_proxy(
instance_name="openml-db",
port=5432,
credentials_path="/path/to/service-account.json"
)
Azure Database¶
Integration with Azure Database services:
from openmlcrawler.cloud import AzureDatabaseIntegration
azuredb = AzureDatabaseIntegration()
# Create Azure Database
server = azuredb.create_server(
name="openml-server",
resource_group="openml-rg",
location="East US",
administrator_login="openml_admin",
administrator_password="${DB_PASSWORD}"
)
# Create database
database = azuredb.create_database(
server_name="openml-server",
database_name="openml",
sku={
"name": "GP_Gen5_2",
"tier": "GeneralPurpose",
"capacity": 2
}
)
# Connect to Azure Database
connection = azuredb.connect(
server="openml-server.database.windows.net",
database="openml",
username="openml_admin@openml-server",
password="${DB_PASSWORD}"
)
Multi-Cloud and Hybrid Deployments¶
Multi-Cloud Architecture¶
Deploy across multiple cloud providers:
from openmlcrawler.cloud import MultiCloudManager
multicloud = MultiCloudManager()
# Configure multi-cloud setup
multicloud.configure_providers([
{
"name": "aws",
"region": "us-east-1",
"services": ["s3", "lambda", "rds"]
},
{
"name": "gcp",
"region": "us-central1",
"services": ["storage", "functions", "sql"]
},
{
"name": "azure",
"region": "East US",
"services": ["blob", "functions", "database"]
}
])
# Deploy across clouds
deployment = multicloud.deploy_multicloud(
application="openml-crawler",
strategy="active-active", # or "active-passive", "geo-distribution"
regions={
"primary": "aws:us-east-1",
"secondary": "gcp:us-central1",
"tertiary": "azure:East US"
}
)
# Cross-cloud data replication
replication = multicloud.setup_replication(
source="aws:s3://bucket/data",
targets=[
"gcp:gs://bucket/data",
"azure:blob://container/data"
],
replication_type="async" # or "sync"
)
Hybrid Cloud Setup¶
Combine on-premises and cloud resources:
from openmlcrawler.cloud import HybridCloudManager
hybrid = HybridCloudManager()
# Configure hybrid setup
hybrid.configure_hybrid(
on_premises={
"data_center": "corporate-dc",
"storage": "nfs://storage.corp.com/data",
"compute": ["server1", "server2", "server3"]
},
cloud_providers=[
{
"name": "aws",
"burst_capacity": True,
"data_sync": True
}
]
)
# Hybrid data processing
processing = hybrid.process_hybrid(
workload="data_analytics",
primary_location="on_premises",
burst_to_cloud=True,
data_locality="prefer_local"
)
# Hybrid backup strategy
backup = hybrid.setup_hybrid_backup(
primary_storage="on_premises",
cloud_backup="aws:s3://backup-bucket",
retention_policy={
"local": "30_days",
"cloud": "1_year"
}
)
Monitoring and Cost Optimization¶
Cloud Monitoring¶
Comprehensive cloud resource monitoring:
from openmlcrawler.cloud import CloudMonitor
monitor = CloudMonitor()
# Monitor cloud resources
metrics = monitor.monitor_resources(
providers=["aws", "gcp", "azure"],
services=["compute", "storage", "database", "networking"],
time_range="1_hour",
granularity="5_minutes"
)
# Set up alerts
alerts = monitor.setup_alerts([
{
"name": "high_cpu_usage",
"condition": "cpu_utilization > 80%",
"duration": "5_minutes",
"notification": "email"
},
{
"name": "storage_threshold",
"condition": "storage_used > 85%",
"duration": "1_hour",
"notification": "slack"
}
])
# Generate monitoring reports
report = monitor.generate_report(
metrics=metrics,
alerts=alerts,
time_period="daily",
format="html"
)
Cost Optimization¶
Optimize cloud costs across providers:
from openmlcrawler.cloud import CostOptimizer
optimizer = CostOptimizer()
# Analyze cloud costs
cost_analysis = optimizer.analyze_costs(
providers=["aws", "gcp", "azure"],
time_range=("2023-01-01", "2023-12-31"),
granularity="daily",
group_by=["service", "region", "resource_type"]
)
# Cost optimization recommendations
recommendations = optimizer.generate_recommendations(
cost_analysis=cost_analysis,
optimization_types=[
"reserved_instances",
"storage_class_optimization",
"compute_rightsizing",
"unused_resource_cleanup"
]
)
# Implement cost optimizations
implementation = optimizer.implement_optimizations(
recommendations=recommendations,
auto_apply=False, # Manual review required
rollback_enabled=True
)
Configuration¶
Cloud Provider Configuration¶
Configure cloud provider settings:
cloud:
providers:
aws:
region: "us-east-1"
profile: "openml"
services:
s3:
default_bucket: "openml-data"
encryption: "AES256"
lambda:
runtime: "python3.9"
memory_size: 1024
timeout: 300
rds:
engine: "postgres"
instance_class: "db.t3.micro"
gcp:
project: "openml-project"
region: "us-central1"
services:
storage:
default_bucket: "openml-data"
functions:
runtime: "python39"
memory: 512
sql:
tier: "db-f1-micro"
azure:
subscription: "${AZURE_SUBSCRIPTION_ID}"
location: "East US"
services:
storage:
account: "${AZURE_STORAGE_ACCOUNT}"
functions:
runtime: "python"
plan: "consumption"
Multi-Cloud Configuration¶
Configure multi-cloud settings:
multicloud:
strategy: "active-active"
providers:
- name: "aws"
weight: 0.5
regions: ["us-east-1", "us-west-2"]
- name: "gcp"
weight: 0.3
regions: ["us-central1", "us-east1"]
- name: "azure"
weight: 0.2
regions: ["East US", "West US"]
data_replication:
enabled: true
type: "async"
consistency: "eventual"
load_balancing:
algorithm: "weighted_round_robin"
health_checks: true
failover: true
Best Practices¶
Cloud Architecture¶
- Multi-Cloud Strategy: Distribute workloads across providers for resilience
- Hybrid Approach: Combine cloud and on-premises resources optimally
- Serverless First: Use serverless services for event-driven workloads
- Containerization: Use containers for consistent deployments
- Infrastructure as Code: Manage infrastructure through code
- Auto-Scaling: Implement automatic scaling based on demand
Security¶
- Identity Management: Use cloud-native identity services
- Network Security: Implement proper network segmentation
- Data Encryption: Encrypt data at rest and in transit
- Access Control: Follow principle of least privilege
- Compliance: Ensure compliance with relevant regulations
- Monitoring: Continuous security monitoring and alerting
Cost Management¶
- Resource Tagging: Tag resources for cost allocation
- Usage Monitoring: Monitor resource usage and costs
- Reserved Instances: Use reserved instances for predictable workloads
- Auto-Scaling: Scale resources based on actual demand
- Storage Optimization: Use appropriate storage classes
- Cleanup: Regularly clean up unused resources
Performance¶
- CDN Integration: Use CDNs for global content delivery
- Caching: Implement caching at multiple levels
- Database Optimization: Optimize database performance
- Network Optimization: Optimize network configurations
- Monitoring: Monitor performance metrics continuously
- Load Testing: Regular load testing and performance validation
Troubleshooting¶
Common Cloud Issues¶
Connectivity Problems¶
Issue: Unable to connect to cloud services
Solution: Check network configuration, security groups, IAM permissions, service endpoints
Resource Limits¶
Issue: Hitting cloud resource limits
Solution: Monitor usage, request limit increases, optimize resource usage
Cost Overruns¶
Deployment Issues¶
Container Deployment Failures¶
Issue: Container deployments failing
Solution: Check container images, resource limits, health checks, logs
Serverless Function Timeouts¶
Issue: Functions timing out
Solution: Increase timeout limits, optimize function code, check resource allocation
Database Connection Issues¶
Issue: Database connection failures
Solution: Check connection strings, security groups, network ACLs, SSL certificates
See Also¶
- Workflow Orchestration - Orchestrating complex workflows
- Data Processing - Data processing pipeline
- API Reference - Cloud integration API
- Tutorials - Cloud deployment tutorials