⚡ Performance Guide
Comprehensive guide to optimizing HyperFabric Interconnect performance for maximum throughput and minimum latency.
Performance Overview
HyperFabric Interconnect is designed for ultra-high performance computing scenarios where every nanosecond matters. This guide covers optimization strategies, benchmarking, and troubleshooting techniques.
Key Performance Metrics
Metric | Target Range | Best Practices |
---|---|---|
Latency | 50ns - 1ms | Use quantum/photonic hardware, optimize routing |
Bandwidth | 10 Gbps - 1 Tbps | Enable compression, use zero-copy buffers |
Throughput | 95%+ utilization | Load balancing, parallel transfers |
Packet Loss | < 0.001% | Fault tolerance, redundant paths |
Jitter | < 1% of latency | Consistent hardware, QoS prioritization |
Hardware Optimization
CPU Configuration
Recommended CPU Settings:
# Disable CPU frequency scaling for consistent performance
echo performance | sudo tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
# Set CPU affinity for HyperFabric processes
taskset -c 0-7 python hyperfabric_app.py
# Enable huge pages for memory performance
echo 2048 | sudo tee /proc/sys/vm/nr_hugepages
Python Configuration:
import os
import psutil
# Optimize Python for performance
os.environ['PYTHONOPTIMIZE'] = '2' # Enable optimizations
os.environ['PYTHONDONTWRITEBYTECODE'] = '1' # Skip .pyc files
# Set process priority
p = psutil.Process()
p.nice(-10) # High priority (requires privileges)
# Configure asyncio for high performance
import asyncio
import uvloop # High-performance event loop
asyncio.set_event_loop_policy(uvloop.EventLoopPolicy())
Memory Optimization
Zero-Copy Buffer Configuration:
from hyperfabric import HyperFabricProtocol, BufferManager
# Optimize buffer pool for your workload
protocol = HyperFabricProtocol(
buffer_pool_size=10000, # Large pool for high-throughput
max_packet_size=1048576, # 1MB packets for bulk transfers
)
# Configure buffer manager
buffer_manager = BufferManager(
pool_size=20000,
buffer_size=1048576,
enable_memory_mapping=True,
use_huge_pages=True
)
Memory-Mapped I/O:
import mmap
import numpy as np
async def zero_copy_transfer_example():
"""Demonstrate zero-copy transfer using memory mapping."""
# Create memory-mapped array
with open('large_data.bin', 'r+b') as f:
# Memory-map the file
mmapped_data = mmap.mmap(f.fileno(), 0)
# Create numpy array without copying data
data_array = np.frombuffer(mmapped_data, dtype=np.float32)
# Transfer using zero-copy semantics
result = await protocol.send_data(
source="compute-node",
destination="storage-node",
data=data_array,
data_type=DataType.TENSOR,
zero_copy=True # Enable zero-copy transfer
)
mmapped_data.close()
return result
Network Interface Optimization
High-Performance Networking:
from hyperfabric import NodeSignature, HardwareType
# Configure nodes for maximum performance
high_perf_node = NodeSignature(
node_id="hpc-node-01",
hardware_type=HardwareType.NVIDIA_H100,
bandwidth_gbps=400,
latency_ns=50,
# Performance optimizations
metadata={
"interface_type": "infiniband_hdr", # 200 Gbps InfiniBand
"mtu_size": 9000, # Jumbo frames
"tcp_window_size": 16777216, # 16MB TCP window
"interrupt_coalescing": True,
"numa_node": 0, # NUMA optimization
"cpu_affinity": [0, 1, 2, 3], # Dedicated CPU cores
}
)
Software Optimization
Protocol Configuration
High-Throughput Configuration:
# Optimize for maximum throughput
protocol = HyperFabricProtocol(
enable_ml_routing=True,
enable_quantum_optimization=False, # Disable if not needed
enable_fault_tolerance=True,
# Performance tuning
default_latency_constraint_ns=1_000_000, # 1ms
buffer_pool_size=50000, # Large buffer pool
max_packet_size=1048576, # 1MB packets
# Advanced settings
congestion_control='bbr', # BBR congestion control
tcp_no_delay=True,
socket_recv_buffer=67108864, # 64MB
socket_send_buffer=67108864, # 64MB
)
Low-Latency Configuration:
# Optimize for minimum latency
protocol = HyperFabricProtocol(
enable_ml_routing=True,
enable_quantum_optimization=True, # For quantum applications
# Ultra-low latency settings
default_latency_constraint_ns=100_000, # 100μs
buffer_pool_size=1000, # Smaller pool, faster allocation
max_packet_size=4096, # Small packets for low latency
# Latency-focused settings
preemptive_routing=True,
interrupt_driven=True,
kernel_bypass=True, # DPDK/RDMA bypass
)
Routing Optimization
ML-Enhanced Routing:
from hyperfabric.routing import RoutingEngine
# Configure intelligent routing
routing_engine = RoutingEngine(
enable_ml_optimization=True,
enable_quantum_optimization=True,
enable_neuromorphic_routing=True,
# ML model parameters
learning_rate=0.001,
training_samples=10000,
model_update_interval=100, # Update every 100 packets
# Prediction features
features=['latency', 'bandwidth', 'congestion', 'packet_loss', 'time_of_day']
)
# Pre-train routing model
await routing_engine.train_model(historical_data)
Load Balancing:
async def configure_load_balancing():
"""Configure advanced load balancing."""
# Create multiple paths for load distribution
paths = [
["node-a", "switch-1", "node-b"],
["node-a", "switch-2", "node-b"],
["node-a", "switch-3", "node-b"]
]
# Configure load balancing weights
await protocol.configure_multipath(
paths=paths,
load_balancing_algorithm='weighted_round_robin',
weights=[0.4, 0.4, 0.2], # Distribute based on capacity
failover_enabled=True,
health_check_interval=1000 # 1ms health checks
)
Compression and Encoding
Adaptive Compression:
from hyperfabric.compression import AdaptiveCompressor
# Configure intelligent compression
compressor = AdaptiveCompressor(
algorithms=['lz4', 'zstd', 'snappy'],
auto_select=True, # Automatically choose best algorithm
compression_threshold=1024, # Only compress data > 1KB
# Performance thresholds
max_compression_time_us=100, # 100μs max compression time
min_compression_ratio=1.1, # Must achieve 10% compression
)
# Use in data transfers
await protocol.send_data(
source="gpu-01",
destination="storage-01",
data=large_tensor,
compression_enabled=True,
compression_config=compressor.get_config()
)
Custom Encoding for Quantum Data:
from hyperfabric.quantum import QuantumStateEncoder
# Optimize quantum state encoding
quantum_encoder = QuantumStateEncoder(
encoding_scheme='amplitude_phase',
precision='float32', # Balance precision vs. bandwidth
error_correction='surface_code',
# Performance optimization
parallel_encoding=True,
simd_acceleration=True,
)
# Encode quantum states efficiently
encoded_state = quantum_encoder.encode(quantum_circuit)
Benchmarking and Monitoring
Performance Benchmarking
Comprehensive Benchmark Suite:
import time
import numpy as np
from hyperfabric.benchmark import PerformanceBenchmark
class HyperFabricBenchmark:
def __init__(self, protocol):
self.protocol = protocol
self.results = {}
async def run_latency_benchmark(self, iterations=1000):
"""Benchmark end-to-end latency."""
latencies = []
for i in range(iterations):
start_time = time.time_ns()
await self.protocol.ping("node-a", "node-b", packet_size=64)
end_time = time.time_ns()
latency_ns = end_time - start_time
latencies.append(latency_ns)
# Brief pause to avoid overwhelming the network
await asyncio.sleep(0.001)
self.results['latency'] = {
'min_ns': np.min(latencies),
'max_ns': np.max(latencies),
'mean_ns': np.mean(latencies),
'median_ns': np.median(latencies),
'p99_ns': np.percentile(latencies, 99),
'std_ns': np.std(latencies)
}
return self.results['latency']
async def run_throughput_benchmark(self, sizes=[1024, 10240, 102400, 1048576]):
"""Benchmark throughput for different packet sizes."""
throughput_results = {}
for size in sizes:
test_data = np.random.bytes(size)
transfer_times = []
# Run multiple transfers for each size
for _ in range(100):
start_time = time.time()
await self.protocol.send_data(
source="node-a",
destination="node-b",
data=test_data,
data_type=DataType.GENERIC
)
transfer_time = time.time() - start_time
transfer_times.append(transfer_time)
# Calculate throughput statistics
avg_time = np.mean(transfer_times)
throughput_mbps = (size * 8) / (avg_time * 1_000_000)
throughput_results[size] = {
'avg_time_s': avg_time,
'throughput_mbps': throughput_mbps,
'throughput_gbps': throughput_mbps / 1000,
'efficiency': throughput_mbps / 1000000 # Efficiency ratio
}
self.results['throughput'] = throughput_results
return throughput_results
async def run_concurrent_benchmark(self, num_streams=10):
"""Benchmark performance under concurrent load."""
# Create multiple concurrent data streams
stream_tasks = []
for stream_id in range(num_streams):
task = self._run_concurrent_stream(stream_id)
stream_tasks.append(task)
# Run all streams concurrently
start_time = time.time()
stream_results = await asyncio.gather(*stream_tasks)
total_time = time.time() - start_time
# Aggregate results
total_bytes = sum(result['bytes_transferred'] for result in stream_results)
aggregate_throughput = (total_bytes * 8) / (total_time * 1_000_000) # Mbps
self.results['concurrent'] = {
'num_streams': num_streams,
'total_time_s': total_time,
'total_bytes': total_bytes,
'aggregate_throughput_mbps': aggregate_throughput,
'per_stream_results': stream_results
}
return self.results['concurrent']
async def _run_concurrent_stream(self, stream_id):
"""Run a single concurrent stream."""
bytes_transferred = 0
transfer_count = 0
# Run stream for 10 seconds
end_time = time.time() + 10
while time.time() < end_time:
# Random transfer size between 1KB and 1MB
size = np.random.randint(1024, 1048576)
test_data = np.random.bytes(size)
await self.protocol.send_data(
source=f"stream-source-{stream_id}",
destination=f"stream-dest-{stream_id}",
data=test_data,
data_type=DataType.GENERIC
)
bytes_transferred += size
transfer_count += 1
return {
'stream_id': stream_id,
'bytes_transferred': bytes_transferred,
'transfer_count': transfer_count,
'avg_transfer_size': bytes_transferred / transfer_count
}
def generate_report(self):
"""Generate comprehensive performance report."""
report = "HyperFabric Performance Benchmark Report\n"
report += "=" * 50 + "\n\n"
# Latency results
if 'latency' in self.results:
lat = self.results['latency']
report += f"Latency Benchmark:\n"
report += f" Mean: {lat['mean_ns']/1000:.1f}μs\n"
report += f" Median: {lat['median_ns']/1000:.1f}μs\n"
report += f" 99th percentile: {lat['p99_ns']/1000:.1f}μs\n"
report += f" Range: {lat['min_ns']/1000:.1f} - {lat['max_ns']/1000:.1f}μs\n\n"
# Throughput results
if 'throughput' in self.results:
report += "Throughput Benchmark:\n"
for size, result in self.results['throughput'].items():
report += f" {size:8d} bytes: {result['throughput_gbps']:.2f} Gbps\n"
report += "\n"
# Concurrent results
if 'concurrent' in self.results:
conc = self.results['concurrent']
report += f"Concurrent Benchmark ({conc['num_streams']} streams):\n"
report += f" Aggregate throughput: {conc['aggregate_throughput_mbps']:.1f} Mbps\n"
report += f" Total data transferred: {conc['total_bytes']/1024/1024:.1f} MB\n"
return report
# Usage example
async def run_performance_benchmarks():
protocol = HyperFabricProtocol()
# Set up test nodes
await protocol.register_node(NodeSignature("node-a", HardwareType.NVIDIA_H100, 400, 100))
await protocol.register_node(NodeSignature("node-b", HardwareType.NVIDIA_A100, 400, 150))
benchmark = HyperFabricBenchmark(protocol)
print("Running latency benchmark...")
await benchmark.run_latency_benchmark()
print("Running throughput benchmark...")
await benchmark.run_throughput_benchmark()
print("Running concurrent benchmark...")
await benchmark.run_concurrent_benchmark()
print(benchmark.generate_report())
# Run benchmarks
asyncio.run(run_performance_benchmarks())
Real-Time Monitoring
Performance Monitoring Dashboard:
from hyperfabric.monitoring import PerformanceMonitor
import matplotlib.pyplot as plt
from collections import deque
import threading
class RealTimeMonitor:
def __init__(self, protocol):
self.protocol = protocol
self.metrics = {
'latency': deque(maxlen=1000),
'bandwidth': deque(maxlen=1000),
'packet_loss': deque(maxlen=1000),
'cpu_usage': deque(maxlen=1000),
'memory_usage': deque(maxlen=1000)
}
self.monitoring = False
async def start_monitoring(self, interval=1.0):
"""Start real-time performance monitoring."""
self.monitoring = True
while self.monitoring:
# Collect performance metrics
metrics = await self._collect_metrics()
# Update metric histories
for key, value in metrics.items():
if key in self.metrics:
self.metrics[key].append(value)
# Check for performance anomalies
self._check_anomalies(metrics)
# Update dashboard
self._update_dashboard()
await asyncio.sleep(interval)
async def _collect_metrics(self):
"""Collect current performance metrics."""
# Network metrics
ping_result = await self.protocol.ping("node-a", "node-b")
# System metrics
cpu_percent = psutil.cpu_percent()
memory_percent = psutil.virtual_memory().percent
return {
'latency': ping_result.latency_ns / 1000, # Convert to μs
'bandwidth': ping_result.bandwidth_gbps,
'packet_loss': ping_result.packet_loss_rate,
'cpu_usage': cpu_percent,
'memory_usage': memory_percent,
'timestamp': time.time()
}
def _check_anomalies(self, metrics):
"""Check for performance anomalies."""
# Latency spike detection
if metrics['latency'] > 1000: # > 1ms
print(f"⚠️ High latency detected: {metrics['latency']:.1f}μs")
# Bandwidth degradation
if metrics['bandwidth'] < 100: # < 100 Gbps
print(f"⚠️ Low bandwidth detected: {metrics['bandwidth']:.1f} Gbps")
# Packet loss
if metrics['packet_loss'] > 0.001: # > 0.1%
print(f"⚠️ Packet loss detected: {metrics['packet_loss']*100:.3f}%")
# Resource utilization
if metrics['cpu_usage'] > 90:
print(f"⚠️ High CPU usage: {metrics['cpu_usage']:.1f}%")
if metrics['memory_usage'] > 90:
print(f"⚠️ High memory usage: {metrics['memory_usage']:.1f}%")
def _update_dashboard(self):
"""Update real-time performance dashboard."""
# Clear terminal and show current stats
os.system('clear' if os.name == 'posix' else 'cls')
print("🌐 HyperFabric Real-Time Performance Monitor")
print("=" * 50)
if self.metrics['latency']:
current_latency = self.metrics['latency'][-1]
avg_latency = np.mean(list(self.metrics['latency']))
print(f"📶 Latency: {current_latency:.1f}μs (avg: {avg_latency:.1f}μs)")
if self.metrics['bandwidth']:
current_bw = self.metrics['bandwidth'][-1]
avg_bw = np.mean(list(self.metrics['bandwidth']))
print(f"🚀 Bandwidth: {current_bw:.1f} Gbps (avg: {avg_bw:.1f} Gbps)")
if self.metrics['packet_loss']:
current_loss = self.metrics['packet_loss'][-1]
print(f"📉 Packet Loss: {current_loss*100:.3f}%")
if self.metrics['cpu_usage']:
current_cpu = self.metrics['cpu_usage'][-1]
print(f"💻 CPU Usage: {current_cpu:.1f}%")
if self.metrics['memory_usage']:
current_mem = self.metrics['memory_usage'][-1]
print(f"🧠 Memory Usage: {current_mem:.1f}%")
print("\nPress Ctrl+C to stop monitoring...")
def stop_monitoring(self):
"""Stop performance monitoring."""
self.monitoring = False
def export_metrics(self, filename='performance_metrics.json'):
"""Export collected metrics to file."""
export_data = {}
for key, values in self.metrics.items():
export_data[key] = list(values)
import json
with open(filename, 'w') as f:
json.dump(export_data, f, indent=2)
print(f"📊 Metrics exported to {filename}")
# Usage example
async def run_monitoring():
protocol = HyperFabricProtocol()
monitor = RealTimeMonitor(protocol)
try:
await monitor.start_monitoring(interval=0.5)
except KeyboardInterrupt:
monitor.stop_monitoring()
monitor.export_metrics()
print("\nMonitoring stopped.")
# Run monitoring
asyncio.run(run_monitoring())
Optimization Strategies
Workload-Specific Optimization
AI/ML Workload Optimization:
async def optimize_for_ai_workloads():
"""Optimize fabric for AI/ML workloads."""
protocol = HyperFabricProtocol(
enable_ml_routing=True,
# AI-specific optimizations
gradient_compression=True,
parameter_caching=True,
model_sharding_support=True,
# Batch processing optimization
batch_aggregation=True,
pipeline_parallelism=True,
# Memory management
buffer_pool_size=100000, # Large pool for model weights
enable_memory_pinning=True,
use_gpu_memory=True
)
# Configure AI-specific data types
await protocol.configure_data_types({
DataType.GRADIENT: {
'compression': 'gradient_sparsification',
'aggregation': 'all_reduce',
'priority': PacketPriority.HIGH
},
DataType.PARAMETER: {
'compression': 'weight_quantization',
'caching': True,
'priority': PacketPriority.MEDIUM
}
})
return protocol
Quantum Computing Optimization:
async def optimize_for_quantum_workloads():
"""Optimize fabric for quantum computing workloads."""
protocol = HyperFabricProtocol(
enable_quantum_optimization=True,
# Quantum-specific settings
quantum_coherence_preservation=True,
entanglement_routing=True,
error_correction_support=True,
# Ultra-low latency for coherence preservation
default_latency_constraint_ns=10_000, # 10μs max
interrupt_driven_scheduling=True,
real_time_priority=True
)
# Configure quantum-aware routing
await protocol.configure_quantum_routing({
'coherence_time_weighting': 0.8,
'fidelity_threshold': 0.99,
'error_rate_tolerance': 1e-6
})
return protocol
Advanced Tuning
Kernel Bypass and DPDK:
# Configure DPDK for kernel bypass
from hyperfabric.dpdk import DPDKInterface
async def configure_dpdk():
"""Configure DPDK for maximum performance."""
dpdk_config = {
'huge_pages': 4096, # 4GB huge pages
'cpu_cores': [0, 1, 2, 3], # Dedicated cores
'memory_channels': 4,
'pci_devices': ['0000:01:00.0', '0000:02:00.0'], # Network adapters
# Performance tuning
'rx_descriptors': 4096,
'tx_descriptors': 4096,
'burst_size': 64,
'prefetch_threshold': 16
}
dpdk_interface = DPDKInterface(dpdk_config)
await dpdk_interface.initialize()
# Integrate with HyperFabric
protocol = HyperFabricProtocol(
network_interface=dpdk_interface,
kernel_bypass=True
)
return protocol
NUMA Optimization:
import numa
def optimize_numa_topology():
"""Optimize for NUMA topology."""
# Get NUMA topology
numa_nodes = numa.get_max_node() + 1
# Bind process to specific NUMA node
numa.set_preferred(0) # Prefer NUMA node 0
# Configure memory allocation
numa.set_membind_nodes([0, 1]) # Allow allocation on nodes 0 and 1
# Configure HyperFabric with NUMA awareness
protocol = HyperFabricProtocol(
numa_aware=True,
preferred_numa_node=0,
memory_interleaving=False # Disable for consistent performance
)
return protocol
Troubleshooting Performance Issues
Common Performance Problems
High Latency Diagnosis:
async def diagnose_high_latency(protocol, source, destination):
"""Diagnose causes of high latency."""
print("🔍 Diagnosing high latency...")
# 1. Basic connectivity test
ping_result = await protocol.ping(source, destination, packet_size=64)
print(f"Basic ping latency: {ping_result.latency_ms:.3f}ms")
# 2. Test different packet sizes
sizes = [64, 256, 1024, 4096, 8192]
for size in sizes:
result = await protocol.ping(source, destination, packet_size=size)
print(f" {size:4d}B: {result.latency_ms:.3f}ms")
# 3. Check routing path
topology_info = await protocol.get_topology_info()
path = await protocol.routing_engine.find_optimal_path(source, destination)
print(f"Routing path: {' -> '.join(path)}")
# 4. Analyze network congestion
congestion_info = await protocol.analyze_congestion(path)
print(f"Congestion analysis: {congestion_info}")
# 5. Check for hardware issues
for node in path:
node_health = await protocol.check_node_health(node)
if node_health['status'] != 'healthy':
print(f"⚠️ Node {node} health issue: {node_health}")
return {
'basic_latency': ping_result.latency_ms,
'path': path,
'congestion': congestion_info
}
Bandwidth Optimization:
async def optimize_bandwidth_utilization(protocol):
"""Optimize bandwidth utilization across the fabric."""
# 1. Analyze current utilization
utilization = await protocol.analyze_bandwidth_utilization()
print(f"Current bandwidth utilization: {utilization['average']:.1f}%")
# 2. Identify bottlenecks
bottlenecks = await protocol.identify_bottlenecks()
for bottleneck in bottlenecks:
print(f"Bottleneck: {bottleneck['location']} ({bottleneck['utilization']:.1f}%)")
# 3. Enable advanced load balancing
await protocol.enable_multipath_routing(
load_balancing='adaptive',
congestion_aware=True,
dynamic_weights=True
)
# 4. Optimize buffer sizes
optimal_buffer_size = await protocol.calculate_optimal_buffer_size()
await protocol.configure_buffers(
buffer_size=optimal_buffer_size,
auto_scaling=True
)
# 5. Enable compression for appropriate data types
await protocol.configure_adaptive_compression(
threshold_bandwidth_mbps=1000, # Enable compression below 1 Gbps
algorithms=['lz4', 'zstd'],
auto_select=True
)
# Performance optimization recommendations
def get_optimization_recommendations(performance_data):
"""Generate optimization recommendations based on performance data."""
recommendations = []
# Latency recommendations
if performance_data['avg_latency_ms'] > 1.0:
recommendations.append({
'category': 'latency',
'issue': 'High latency detected',
'recommendation': 'Enable quantum optimization or upgrade to photonic switches',
'priority': 'high'
})
# Bandwidth recommendations
if performance_data['bandwidth_utilization'] < 50:
recommendations.append({
'category': 'bandwidth',
'issue': 'Low bandwidth utilization',
'recommendation': 'Enable compression and increase packet sizes',
'priority': 'medium'
})
# CPU recommendations
if performance_data['cpu_usage'] > 80:
recommendations.append({
'category': 'cpu',
'issue': 'High CPU usage',
'recommendation': 'Enable kernel bypass (DPDK) or add more CPU cores',
'priority': 'high'
})
return recommendations
Performance Best Practices
Configuration Best Practices
- Hardware Selection:
- Use latest generation network adapters (100+ Gbps)
- Enable SR-IOV for virtualized environments
- Configure NUMA topology awareness
-
Use NVMe storage for minimal I/O latency
-
Network Configuration:
- Enable jumbo frames (9000 MTU)
- Configure interrupt coalescing
- Use dedicated CPU cores for networking
-
Disable power management features
-
Application Design:
- Use asynchronous I/O throughout
- Implement proper error handling
- Design for horizontal scaling
- Minimize data serialization overhead
Monitoring and Alerting
# Set up performance alerts
await protocol.configure_alerts({
'high_latency_threshold_ms': 1.0,
'low_bandwidth_threshold_gbps': 50.0,
'packet_loss_threshold_percent': 0.01,
'cpu_usage_threshold_percent': 85.0,
# Alert actions
'alert_endpoints': ['email:admin@company.com', 'slack:#alerts'],
'auto_optimization': True,
'escalation_delay_minutes': 5
})
This comprehensive performance guide ensures optimal HyperFabric Interconnect performance across all deployment scenarios, from development testing to production supercomputing clusters.