Agent Design¶
Agent design in Cognito Simulation Engine follows cognitive science principles to create believable, intelligent, and adaptive artificial agents. Our multi-layered architecture enables sophisticated behaviors while maintaining computational efficiency.
Agent Architecture Overview¶
graph TB
Environment[Environment] --> Perception[Perception Layer]
Perception --> Memory[Memory System]
Memory --> Reasoning[Reasoning Engine]
Reasoning --> Goals[Goal Management]
Goals --> Planning[Action Planning]
Planning --> Actions[Action Execution]
Actions --> Environment
subgraph "Cognitive Architecture"
Memory
Reasoning
Goals
Planning
end
subgraph "Personality System"
Traits[Personality Traits]
Emotions[Emotional State]
Motivation[Motivation System]
end
Traits --> Goals
Emotions --> Planning
Motivation --> Actions
Core Agent Types¶
1. CognitiveAgent - General Purpose Intelligence¶
The CognitiveAgent
provides balanced cognitive capabilities suitable for most simulation scenarios:
from cognito_sim_engine import CognitiveAgent, Environment
# Create a cognitive agent with personality
agent = CognitiveAgent(
agent_id="alice_researcher",
personality_traits={
"openness": 0.8, # High creativity and curiosity
"conscientiousness": 0.7, # Organized and goal-oriented
"extraversion": 0.6, # Moderately social
"agreeableness": 0.8, # Cooperative and trusting
"neuroticism": 0.3 # Emotionally stable
},
cognitive_config={
"memory_capacity": 1000,
"reasoning_depth": 8,
"learning_rate": 0.1,
"attention_span": 50
}
)
# Customize agent's capabilities
agent.set_goals([
Goal("Research novel materials", priority=0.9),
Goal("Collaborate with team", priority=0.7),
Goal("Publish findings", priority=0.8)
])
# Add domain knowledge
agent.memory_manager.store_memory(MemoryItem(
content="Carbon nanotubes have exceptional strength-to-weight ratio",
memory_type=MemoryType.SEMANTIC,
relevance=0.9
))
Key Features:
- Balanced reasoning: Combines logical and intuitive thinking
- Adaptive learning: Updates knowledge based on experience
- Social awareness: Considers other agents in decision-making
- Emotional intelligence: Basic emotional state management
2. ReasoningAgent - Logical Problem Solver¶
The ReasoningAgent
specializes in systematic logical analysis and formal reasoning:
from cognito_sim_engine import ReasoningAgent, Rule, Fact
# Create a reasoning specialist
logic_agent = ReasoningAgent(
agent_id="dr_logic",
reasoning_config={
"inference_strategy": "exhaustive",
"proof_generation": True,
"uncertainty_handling": True,
"max_reasoning_depth": 15
}
)
# Add specialized reasoning rules
theorem_proving_rules = [
Rule(
conditions=[Fact("theorem", ["?t"]), Fact("proof_exists", ["?t"])],
conclusion=Fact("proven", ["?t"]),
confidence=0.95,
name="theorem_proving"
),
Rule(
conditions=[Fact("axiom", ["?a"]), Fact("derivation_valid", ["?a", "?t"])],
conclusion=Fact("theorem", ["?t"]),
confidence=0.9,
name="theorem_derivation"
)
]
for rule in theorem_proving_rules:
logic_agent.inference_engine.reasoner.add_rule(rule)
# Set formal reasoning goals
logic_agent.set_goals([
Goal("Prove mathematical theorems", priority=1.0),
Goal("Verify logical consistency", priority=0.9),
Goal("Generate formal proofs", priority=0.8)
])
Specialized Capabilities:
- Formal logic: First-order and higher-order logic reasoning
- Proof generation: Creates step-by-step logical proofs
- Consistency checking: Detects and resolves contradictions
- Symbolic manipulation: Works with abstract mathematical concepts
3. LearningAgent - Adaptive Intelligence¶
The LearningAgent
focuses on continuous learning and adaptation:
from cognito_sim_engine import LearningAgent, LearningStrategy
# Create an adaptive learning agent
learner = LearningAgent(
agent_id="adaptive_alice",
learning_config={
"strategy": LearningStrategy.REINFORCEMENT,
"exploration_rate": 0.2,
"learning_rate": 0.15,
"memory_consolidation": True,
"transfer_learning": True
}
)
# Configure learning parameters
learner.configure_learning(
reward_function=lambda action, outcome: calculate_reward(action, outcome),
experience_replay=True,
meta_learning=True
)
# Set learning objectives
learner.set_learning_goals([
"Optimize decision-making speed",
"Improve prediction accuracy",
"Adapt to environmental changes",
"Transfer knowledge across domains"
])
def calculate_reward(action, outcome):
"""Custom reward function for learning"""
base_reward = 0.0
if outcome.success:
base_reward += 1.0
# Bonus for efficiency
if outcome.execution_time < action.expected_time:
base_reward += 0.5
# Penalty for errors
if outcome.errors:
base_reward -= 0.3 * len(outcome.errors)
return base_reward
Learning Mechanisms:
- Reinforcement learning: Trial-and-error optimization
- Experience replay: Learning from past experiences
- Transfer learning: Applying knowledge across domains
- Meta-learning: Learning how to learn more effectively
4. MetaCognitiveAgent - Strategic Thinking¶
The MetaCognitiveAgent
excels at thinking about thinking and strategic planning:
from cognito_sim_engine import MetaCognitiveAgent, MetaStrategy
# Create a meta-cognitive agent
meta_agent = MetaCognitiveAgent(
agent_id="meta_mind",
meta_config={
"self_monitoring": True,
"strategy_selection": True,
"cognitive_control": True,
"reflection_depth": 5
}
)
# Configure meta-cognitive strategies
meta_agent.add_meta_strategy(MetaStrategy(
name="performance_monitoring",
trigger_conditions=["task_completion", "error_detected"],
actions=[
"analyze_performance",
"adjust_strategy",
"update_self_model"
]
))
meta_agent.add_meta_strategy(MetaStrategy(
name="cognitive_resource_management",
trigger_conditions=["high_cognitive_load", "time_pressure"],
actions=[
"prioritize_tasks",
"allocate_attention",
"delegate_or_simplify"
]
))
# Enable self-reflection
meta_agent.enable_reflection(
reflection_frequency=10, # Every 10 actions
reflection_depth=3, # 3 levels of meta-reasoning
self_model_updates=True
)
Meta-Cognitive Features:
- Self-monitoring: Tracks own cognitive processes
- Strategy selection: Chooses optimal cognitive strategies
- Cognitive control: Manages attention and working memory
- Self-reflection: Analyzes and improves own thinking
Personality and Individual Differences¶
Big Five Personality Model¶
Agents use the scientifically validated Big Five personality model:
def create_personality_profile(openness, conscientiousness, extraversion,
agreeableness, neuroticism):
"""Create a personality profile based on Big Five traits"""
return {
"openness": {
"value": openness,
"facets": {
"imagination": openness * 0.9 + random.normal(0, 0.1),
"artistic_interests": openness * 0.8 + random.normal(0, 0.1),
"intellectualism": openness * 0.85 + random.normal(0, 0.1),
"adventurousness": openness * 0.75 + random.normal(0, 0.1),
"liberalism": openness * 0.7 + random.normal(0, 0.1)
}
},
"conscientiousness": {
"value": conscientiousness,
"facets": {
"self_efficacy": conscientiousness * 0.9 + random.normal(0, 0.1),
"orderliness": conscientiousness * 0.85 + random.normal(0, 0.1),
"dutifulness": conscientiousness * 0.8 + random.normal(0, 0.1),
"achievement_striving": conscientiousness * 0.9 + random.normal(0, 0.1),
"self_discipline": conscientiousness * 0.95 + random.normal(0, 0.1)
}
}
# ... other traits with facets
}
# Create diverse agent personalities
creative_researcher = CognitiveAgent(
"creative_mind",
personality_traits=create_personality_profile(
openness=0.9, # Highly creative and open to new ideas
conscientiousness=0.6, # Moderately organized
extraversion=0.7, # Socially engaged
agreeableness=0.8, # Collaborative
neuroticism=0.4 # Somewhat anxious (fuels creativity)
)
)
methodical_scientist = CognitiveAgent(
"methodical_mind",
personality_traits=create_personality_profile(
openness=0.6, # Open but focused
conscientiousness=0.95, # Extremely organized and systematic
extraversion=0.4, # More introverted
agreeableness=0.7, # Cooperative but assertive
neuroticism=0.2 # Very emotionally stable
)
)
Personality Effects on Behavior¶
Personality traits influence every aspect of agent behavior:
class PersonalityInfluencedBehavior:
def __init__(self, agent):
self.agent = agent
self.personality = agent.personality_traits
def influence_goal_setting(self, potential_goals):
"""Personality affects which goals agents pursue"""
weighted_goals = []
for goal in potential_goals:
weight = goal.base_priority
# Openness affects preference for novel goals
if goal.novelty_score:
weight += self.personality["openness"] * goal.novelty_score * 0.3
# Conscientiousness affects preference for structured goals
if goal.structure_score:
weight += self.personality["conscientiousness"] * goal.structure_score * 0.4
# Extraversion affects social goals
if goal.social_component:
weight += self.personality["extraversion"] * goal.social_component * 0.3
weighted_goals.append((goal, weight))
# Select goals based on personality-weighted preferences
weighted_goals.sort(key=lambda x: x[1], reverse=True)
return [goal for goal, weight in weighted_goals[:self.agent.max_goals]]
def influence_decision_making(self, decision_context):
"""Personality affects how decisions are made"""
# Neuroticism affects risk tolerance
risk_tolerance = 1.0 - self.personality["neuroticism"] * 0.7
# Openness affects preference for novel solutions
novelty_preference = self.personality["openness"] * 0.8
# Conscientiousness affects systematic evaluation
systematic_evaluation = self.personality["conscientiousness"] * 0.9
# Agreeableness affects consideration of others
social_consideration = self.personality["agreeableness"] * 0.8
# Extraversion affects speed of decision-making
decision_speed = self.personality["extraversion"] * 0.6 + 0.4
return {
"risk_tolerance": risk_tolerance,
"novelty_preference": novelty_preference,
"systematic_evaluation": systematic_evaluation,
"social_consideration": social_consideration,
"decision_speed": decision_speed
}
def influence_communication_style(self):
"""Personality affects how agents communicate"""
style = {
"verbosity": self.personality["extraversion"] * 0.8 + 0.2,
"formality": self.personality["conscientiousness"] * 0.7 + 0.2,
"emotional_expression": 1.0 - self.personality["neuroticism"] * 0.5,
"cooperation": self.personality["agreeableness"] * 0.9 + 0.1,
"idea_sharing": self.personality["openness"] * 0.8 + 0.2
}
return style
# Apply personality influences
behavior_system = PersonalityInfluencedBehavior(creative_researcher)
decision_params = behavior_system.influence_decision_making(current_context)
communication_style = behavior_system.influence_communication_style()
Cognitive Capabilities¶
Working Memory Management¶
Agents have limited working memory that affects their cognitive performance:
class WorkingMemory:
def __init__(self, capacity=7): # Miller's magic number ±2
self.capacity = capacity
self.contents = []
self.attention_focus = None
self.rehearsal_items = set()
def add_item(self, item, importance=0.5):
"""Add item to working memory with capacity management"""
# Remove least important items if at capacity
if len(self.contents) >= self.capacity:
self.contents.sort(key=lambda x: x.importance)
removed = self.contents.pop(0)
print(f"🧠 Working memory overflow: forgot {removed.content}")
# Add new item
working_memory_item = WorkingMemoryItem(
content=item,
importance=importance,
activation_level=1.0,
timestamp=time.time()
)
self.contents.append(working_memory_item)
# Update attention if item is very important
if importance > 0.8:
self.attention_focus = working_memory_item
def rehearse(self, item_content):
"""Active rehearsal to maintain items in working memory"""
for item in self.contents:
if item.content == item_content:
item.activation_level = min(1.0, item.activation_level + 0.2)
self.rehearsal_items.add(item_content)
break
def decay(self, decay_rate=0.1):
"""Natural decay of working memory items"""
for item in self.contents:
if item.content not in self.rehearsal_items:
item.activation_level *= (1 - decay_rate)
# Remove items below activation threshold
self.contents = [item for item in self.contents if item.activation_level > 0.2]
# Clear rehearsal set
self.rehearsal_items.clear()
def get_accessible_items(self, threshold=0.3):
"""Get items currently accessible in working memory"""
return [item for item in self.contents if item.activation_level >= threshold]
class WorkingMemoryItem:
def __init__(self, content, importance, activation_level, timestamp):
self.content = content
self.importance = importance
self.activation_level = activation_level
self.timestamp = timestamp
# Integrate working memory with agents
agent.working_memory = WorkingMemory(capacity=7)
# Working memory affects cognitive processes
def cognitive_processing_with_wm(agent, task):
"""Cognitive processing limited by working memory"""
# Load relevant information into working memory
relevant_memories = agent.memory_manager.search_memories(task.description, limit=5)
for memory in relevant_memories:
agent.working_memory.add_item(memory.content, importance=memory.relevance)
# Add task information
agent.working_memory.add_item(task.description, importance=0.9)
# Process within working memory constraints
accessible_info = agent.working_memory.get_accessible_items()
if len(accessible_info) < 3:
print("⚠️ Insufficient working memory for complex reasoning")
# Simplify task or retrieve more information
return simplified_processing(agent, task)
else:
return full_processing(agent, task, accessible_info)
Attention Mechanisms¶
Agents have limited attention that must be allocated strategically:
class AttentionSystem:
def __init__(self, total_capacity=100):
self.total_capacity = total_capacity
self.allocations = {}
self.focus_target = None
self.divided_attention_penalty = 0.8 # Performance penalty for multitasking
def allocate_attention(self, target, amount):
"""Allocate attention to a target"""
if sum(self.allocations.values()) + amount > self.total_capacity:
# Need to reallocate attention
self.reallocate_attention(target, amount)
else:
self.allocations[target] = amount
def focus_attention(self, target):
"""Focus most attention on a single target"""
self.focus_target = target
self.allocations = {target: self.total_capacity * 0.8}
# Distribute remaining attention to background processes
background_capacity = self.total_capacity * 0.2
background_targets = [t for t in self.get_background_targets() if t != target]
if background_targets:
per_target = background_capacity / len(background_targets)
for bg_target in background_targets:
self.allocations[bg_target] = per_target
def divide_attention(self, targets):
"""Divide attention among multiple targets"""
self.focus_target = None
if len(targets) == 1:
self.allocations = {targets[0]: self.total_capacity}
else:
# Equal division with multitasking penalty
per_target = (self.total_capacity / len(targets)) * self.divided_attention_penalty
self.allocations = {target: per_target for target in targets}
def get_attention_efficiency(self, target):
"""Get efficiency multiplier based on attention allocation"""
if target not in self.allocations:
return 0.1 # Very low efficiency without attention
attention_ratio = self.allocations[target] / self.total_capacity
# Focused attention is more efficient
if self.focus_target == target:
return min(1.0, attention_ratio * 1.2)
else:
return attention_ratio
def reallocate_attention(self, new_target, required_amount):
"""Intelligently reallocate attention for new target"""
# Find lowest priority allocations to reduce
current_allocations = list(self.allocations.items())
current_allocations.sort(key=lambda x: self.get_target_priority(x[0]))
freed_attention = 0
targets_to_reduce = []
for target, allocation in current_allocations:
if freed_attention >= required_amount:
break
reduction = min(allocation * 0.5, required_amount - freed_attention)
targets_to_reduce.append((target, reduction))
freed_attention += reduction
# Apply reductions
for target, reduction in targets_to_reduce:
self.allocations[target] -= reduction
# Allocate to new target
self.allocations[new_target] = required_amount
def get_target_priority(self, target):
"""Get priority of attention target (implement based on agent goals)"""
# This would be implemented based on agent's current goals and context
return 0.5 # Default medium priority
# Integrate attention with agent processing
agent.attention_system = AttentionSystem(total_capacity=100)
def attention_aware_processing(agent, tasks):
"""Process tasks with attention constraints"""
if len(tasks) == 1:
# Single task - focus attention
agent.attention_system.focus_attention(tasks[0])
efficiency = agent.attention_system.get_attention_efficiency(tasks[0])
return process_task(agent, tasks[0], efficiency)
else:
# Multiple tasks - divide attention
agent.attention_system.divide_attention(tasks)
results = []
for task in tasks:
efficiency = agent.attention_system.get_attention_efficiency(task)
result = process_task(agent, task, efficiency)
results.append(result)
return results
Learning and Adaptation¶
Agents continuously learn and adapt their behavior:
class ContinuousLearningSystem:
def __init__(self, agent):
self.agent = agent
self.learning_history = []
self.performance_metrics = {}
self.adaptation_strategies = []
def learn_from_experience(self, experience):
"""Learn from a completed experience"""
# Extract learning signals
outcome_quality = self.evaluate_outcome(experience.outcome)
strategy_effectiveness = self.evaluate_strategy(experience.strategy, outcome_quality)
# Update performance metrics
self.update_performance_metrics(experience, outcome_quality)
# Adapt behavior based on learning
if outcome_quality < 0.5:
self.adapt_after_failure(experience)
elif outcome_quality > 0.8:
self.reinforce_success(experience)
# Store learning record
learning_record = {
"experience": experience,
"outcome_quality": outcome_quality,
"adaptations_made": self.get_recent_adaptations(),
"timestamp": time.time()
}
self.learning_history.append(learning_record)
def adapt_after_failure(self, failed_experience):
"""Adapt behavior after failure"""
# Analyze failure causes
failure_analysis = self.analyze_failure(failed_experience)
# Apply appropriate adaptations
for cause in failure_analysis.primary_causes:
if cause == "insufficient_knowledge":
self.increase_information_gathering()
elif cause == "poor_strategy_selection":
self.adjust_strategy_preferences()
elif cause == "inadequate_resources":
self.improve_resource_management()
elif cause == "environmental_change":
self.update_environment_model()
def reinforce_success(self, successful_experience):
"""Reinforce successful behaviors"""
# Identify key success factors
success_factors = self.identify_success_factors(successful_experience)
# Strengthen successful patterns
for factor in success_factors:
if factor.type == "strategy":
self.increase_strategy_preference(factor.strategy)
elif factor.type == "knowledge":
self.reinforce_knowledge_use(factor.knowledge)
elif factor.type == "behavior":
self.strengthen_behavior_pattern(factor.pattern)
def meta_learn(self):
"""Learn about learning - meta-learning"""
# Analyze learning effectiveness over time
recent_learning = self.learning_history[-50:] # Last 50 experiences
learning_effectiveness = self.calculate_learning_rate(recent_learning)
if learning_effectiveness < 0.3:
# Poor learning - adjust learning parameters
self.adjust_learning_parameters()
# Identify successful learning strategies
successful_adaptations = [
record for record in recent_learning
if record["outcome_quality"] > 0.7
]
# Extract patterns from successful adaptations
adaptation_patterns = self.extract_adaptation_patterns(successful_adaptations)
# Update learning strategies
self.update_learning_strategies(adaptation_patterns)
def calculate_learning_rate(self, experience_history):
"""Calculate how effectively the agent is learning"""
if len(experience_history) < 10:
return 0.5 # Default when insufficient data
# Calculate improvement over time
early_performance = np.mean([exp["outcome_quality"] for exp in experience_history[:10]])
recent_performance = np.mean([exp["outcome_quality"] for exp in experience_history[-10:]])
improvement = recent_performance - early_performance
learning_rate = max(0, min(1, (improvement + 0.5))) # Normalize to [0,1]
return learning_rate
# Integrate learning system
agent.learning_system = ContinuousLearningSystem(agent)
# Learn from each experience
def execute_with_learning(agent, action):
"""Execute action and learn from the experience"""
# Record pre-action state
pre_state = {
"goals": agent.goals.copy(),
"memory_state": agent.memory_manager.get_summary(),
"confidence": agent.get_confidence_level()
}
# Execute action
outcome = agent.execute_action(action)
# Create experience record
experience = Experience(
agent_id=agent.agent_id,
action=action,
pre_state=pre_state,
outcome=outcome,
context=agent.get_current_context(),
timestamp=time.time()
)
# Learn from experience
agent.learning_system.learn_from_experience(experience)
# Periodic meta-learning
if len(agent.learning_system.learning_history) % 25 == 0:
agent.learning_system.meta_learn()
return outcome
Multi-Agent Interactions¶
Communication Protocols¶
Agents communicate using structured protocols:
class CommunicationProtocol:
def __init__(self):
self.message_types = {
"REQUEST": self.handle_request,
"INFORM": self.handle_inform,
"QUERY": self.handle_query,
"PROPOSE": self.handle_propose,
"ACCEPT": self.handle_accept,
"REJECT": self.handle_reject,
"NEGOTIATE": self.handle_negotiate
}
def send_message(self, sender, receiver, message_type, content, context=None):
"""Send a message between agents"""
message = Message(
sender_id=sender.agent_id,
receiver_id=receiver.agent_id,
message_type=message_type,
content=content,
context=context or {},
timestamp=time.time(),
message_id=generate_message_id()
)
# Apply sender's communication style
styled_message = self.apply_communication_style(sender, message)
# Send through environment
sender.environment.deliver_message(styled_message)
return message.message_id
def receive_message(self, agent, message):
"""Process received message"""
# Check attention and working memory constraints
if not agent.can_process_message(message):
# Queue for later processing
agent.message_queue.append(message)
return
# Process message based on type
handler = self.message_types.get(message.message_type)
if handler:
response = handler(agent, message)
# Send response if generated
if response:
self.send_message(
agent,
agent.environment.get_agent(message.sender_id),
response.message_type,
response.content,
response.context
)
# Store communication in memory
agent.memory_manager.store_memory(MemoryItem(
content=f"Received {message.message_type} from {message.sender_id}: {message.content}",
memory_type=MemoryType.EPISODIC,
context={"communication": True, "sender": message.sender_id}
))
def handle_request(self, agent, message):
"""Handle request messages"""
request_content = message.content
# Evaluate ability to fulfill request
can_fulfill = agent.evaluate_request_feasibility(request_content)
if can_fulfill.feasible:
# Accept request
return Message(
message_type="ACCEPT",
content={
"original_request": message.message_id,
"estimated_completion": can_fulfill.estimated_time,
"conditions": can_fulfill.conditions
}
)
else:
# Reject or negotiate
if can_fulfill.alternative_possible:
return Message(
message_type="NEGOTIATE",
content={
"original_request": message.message_id,
"alternative_proposal": can_fulfill.alternative,
"reasons": can_fulfill.rejection_reasons
}
)
else:
return Message(
message_type="REJECT",
content={
"original_request": message.message_id,
"reasons": can_fulfill.rejection_reasons
}
)
# Example: Collaborative research scenario
def research_collaboration_example():
"""Example of agents collaborating on research"""
# Create research team
lead_researcher = CognitiveAgent("lead_researcher")
data_analyst = ReasoningAgent("data_analyst")
theorist = MetaCognitiveAgent("theorist")
comm_protocol = CommunicationProtocol()
# Lead researcher initiates collaboration
comm_protocol.send_message(
lead_researcher,
data_analyst,
"REQUEST",
{
"task": "Analyze experimental data for pattern X",
"dataset": "experiment_2024_data.csv",
"deadline": "2024-01-15",
"priority": "high"
},
context={"project": "cognitive_modeling_study"}
)
# Data analyst responds with analysis capabilities
comm_protocol.send_message(
data_analyst,
lead_researcher,
"ACCEPT",
{
"estimated_completion": "2024-01-12",
"analysis_methods": ["statistical_analysis", "pattern_recognition"],
"deliverables": ["analysis_report", "visualizations"]
}
)
# Theorist contributes theoretical framework
comm_protocol.send_message(
theorist,
lead_researcher,
"INFORM",
{
"contribution": "Theoretical framework for interpreting pattern X",
"relevant_theories": ["cognitive_load_theory", "dual_process_theory"],
"predictions": ["hypothesis_1", "hypothesis_2"]
}
)
Coordination Mechanisms¶
Agents coordinate their activities through various mechanisms:
class CoordinationMechanism:
def __init__(self, coordination_type="hierarchical"):
self.coordination_type = coordination_type
self.coordination_strategies = {
"hierarchical": self.hierarchical_coordination,
"democratic": self.democratic_coordination,
"market": self.market_coordination,
"emergent": self.emergent_coordination
}
def coordinate_agents(self, agents, task):
"""Coordinate agents for a shared task"""
strategy = self.coordination_strategies[self.coordination_type]
return strategy(agents, task)
def hierarchical_coordination(self, agents, task):
"""Hierarchical coordination with designated leader"""
# Select leader (highest capability for task)
leader = max(agents, key=lambda a: a.evaluate_task_capability(task))
# Leader decomposes task
subtasks = leader.decompose_task(task)
# Assign subtasks based on agent capabilities
assignments = {}
for subtask in subtasks:
best_agent = max(
[a for a in agents if a != leader],
key=lambda a: a.evaluate_task_capability(subtask)
)
assignments[subtask] = best_agent
# Leader monitors and coordinates execution
coordination_plan = {
"leader": leader,
"assignments": assignments,
"monitoring_schedule": leader.create_monitoring_schedule(subtasks),
"communication_protocol": "hierarchical"
}
return coordination_plan
def democratic_coordination(self, agents, task):
"""Democratic coordination through consensus"""
# All agents propose approaches
proposals = [agent.propose_approach(task) for agent in agents]
# Vote on best approach
votes = {}
for agent in agents:
preferred_proposal = agent.evaluate_proposals(proposals)
votes[preferred_proposal] = votes.get(preferred_proposal, 0) + 1
# Select winning approach
winning_proposal = max(votes.keys(), key=votes.get)
# Collaborative task decomposition
subtasks = self.collaborative_decomposition(agents, task, winning_proposal)
# Self-assignment based on preferences and capabilities
assignments = self.democratic_assignment(agents, subtasks)
coordination_plan = {
"approach": winning_proposal,
"assignments": assignments,
"decision_making": "consensus",
"communication_protocol": "democratic"
}
return coordination_plan
def market_coordination(self, agents, task):
"""Market-based coordination through bidding"""
# Decompose task into tradeable units
task_units = self.create_task_units(task)
# Agents bid on task units
bids = {}
for unit in task_units:
unit_bids = []
for agent in agents:
bid = agent.create_bid(unit)
if bid:
unit_bids.append(bid)
bids[unit] = unit_bids
# Allocate based on bids (considering cost, quality, time)
allocations = self.allocate_by_auction(bids)
coordination_plan = {
"allocations": allocations,
"payment_mechanism": "performance_based",
"communication_protocol": "market"
}
return coordination_plan
# Example: Multi-agent scientific research
def multi_agent_research_example():
"""Example of coordinated multi-agent research"""
# Create diverse research team
team = [
CognitiveAgent("experimentalist",
personality_traits={"conscientiousness": 0.9, "openness": 0.7}),
ReasoningAgent("theorist",
reasoning_config={"proof_generation": True}),
LearningAgent("data_scientist",
learning_config={"strategy": "reinforcement"}),
MetaCognitiveAgent("research_director",
meta_config={"strategic_planning": True})
]
# Research task: "Develop new cognitive architecture"
research_task = Task(
description="Develop new cognitive architecture for AGI",
requirements=[
"Theoretical foundation",
"Experimental validation",
"Computational implementation",
"Performance evaluation"
],
constraints={
"timeline": "6 months",
"budget": "$100,000",
"publication_target": "top-tier_conference"
}
)
# Use hierarchical coordination with research director as leader
coordinator = CoordinationMechanism("hierarchical")
coordination_plan = coordinator.coordinate_agents(team, research_task)
print("🔬 Research Coordination Plan:")
print(f"Leader: {coordination_plan['leader'].agent_id}")
print("Task Assignments:")
for subtask, agent in coordination_plan['assignments'].items():
print(f" • {subtask.description} → {agent.agent_id}")
# Execute coordinated research
research_results = execute_coordinated_research(team, coordination_plan)
return research_results
Agent Evaluation and Metrics¶
Performance Metrics¶
Comprehensive evaluation of agent performance:
class AgentEvaluator:
def __init__(self):
self.metrics = {
"cognitive": self.evaluate_cognitive_performance,
"social": self.evaluate_social_performance,
"learning": self.evaluate_learning_performance,
"efficiency": self.evaluate_efficiency,
"reliability": self.evaluate_reliability
}
def comprehensive_evaluation(self, agent, evaluation_period="last_100_actions"):
"""Comprehensive evaluation of agent performance"""
evaluation_results = {}
for metric_name, evaluator in self.metrics.items():
try:
score = evaluator(agent, evaluation_period)
evaluation_results[metric_name] = score
except Exception as e:
evaluation_results[metric_name] = {
"error": str(e),
"score": 0.0
}
# Calculate overall performance score
weights = {
"cognitive": 0.3,
"social": 0.2,
"learning": 0.2,
"efficiency": 0.15,
"reliability": 0.15
}
overall_score = sum(
evaluation_results[metric]["score"] * weights[metric]
for metric in weights.keys()
if "score" in evaluation_results[metric]
)
evaluation_results["overall"] = {"score": overall_score}
return evaluation_results
def evaluate_cognitive_performance(self, agent, period):
"""Evaluate cognitive capabilities"""
# Reasoning accuracy
reasoning_tasks = agent.get_completed_reasoning_tasks(period)
reasoning_accuracy = sum(task.success for task in reasoning_tasks) / max(len(reasoning_tasks), 1)
# Memory effectiveness
memory_recalls = agent.get_memory_recall_attempts(period)
memory_accuracy = sum(recall.correct for recall in memory_recalls) / max(len(memory_recalls), 1)
# Problem-solving efficiency
problems_solved = agent.get_problems_solved(period)
avg_solution_quality = np.mean([p.quality_score for p in problems_solved]) if problems_solved else 0
# Goal achievement rate
goals_attempted = agent.get_goals_attempted(period)
goal_achievement_rate = sum(goal.achieved for goal in goals_attempted) / max(len(goals_attempted), 1)
cognitive_score = np.mean([
reasoning_accuracy,
memory_accuracy,
avg_solution_quality,
goal_achievement_rate
])
return {
"score": cognitive_score,
"components": {
"reasoning_accuracy": reasoning_accuracy,
"memory_accuracy": memory_accuracy,
"solution_quality": avg_solution_quality,
"goal_achievement": goal_achievement_rate
}
}
def evaluate_social_performance(self, agent, period):
"""Evaluate social interaction capabilities"""
# Communication effectiveness
messages_sent = agent.get_messages_sent(period)
messages_understood = sum(msg.recipient_understood for msg in messages_sent)
communication_clarity = messages_understood / max(len(messages_sent), 1)
# Collaboration success
collaborations = agent.get_collaborations(period)
collaboration_success = sum(collab.successful for collab in collaborations) / max(len(collaborations), 1)
# Helping behavior
help_requests_received = agent.get_help_requests_received(period)
help_provided = sum(req.help_provided for req in help_requests_received)
helping_rate = help_provided / max(len(help_requests_received), 1)
# Social network centrality
social_centrality = agent.calculate_social_network_centrality()
social_score = np.mean([
communication_clarity,
collaboration_success,
helping_rate,
social_centrality
])
return {
"score": social_score,
"components": {
"communication_clarity": communication_clarity,
"collaboration_success": collaboration_success,
"helping_rate": helping_rate,
"social_centrality": social_centrality
}
}
def evaluate_learning_performance(self, agent, period):
"""Evaluate learning and adaptation capabilities"""
# Learning speed
learning_experiences = agent.get_learning_experiences(period)
performance_improvements = [exp.performance_delta for exp in learning_experiences]
avg_improvement_rate = np.mean(performance_improvements) if performance_improvements else 0
# Knowledge retention
knowledge_tests = agent.get_knowledge_retention_tests(period)
retention_rate = sum(test.retained for test in knowledge_tests) / max(len(knowledge_tests), 1)
# Transfer learning effectiveness
transfer_tasks = agent.get_transfer_learning_tasks(period)
transfer_success = sum(task.successful_transfer for task in transfer_tasks) / max(len(transfer_tasks), 1)
# Adaptation to environmental changes
env_changes = agent.get_environmental_changes(period)
adaptation_success = sum(change.adapted_successfully for change in env_changes) / max(len(env_changes), 1)
learning_score = np.mean([
avg_improvement_rate,
retention_rate,
transfer_success,
adaptation_success
])
return {
"score": learning_score,
"components": {
"improvement_rate": avg_improvement_rate,
"retention_rate": retention_rate,
"transfer_success": transfer_success,
"adaptation_success": adaptation_success
}
}
# Example evaluation
evaluator = AgentEvaluator()
# Evaluate research team
for agent in research_team:
evaluation = evaluator.comprehensive_evaluation(agent)
print(f"\n📊 Evaluation for {agent.agent_id}:")
print(f"Overall Score: {evaluation['overall']['score']:.2f}")
for metric, result in evaluation.items():
if metric != "overall" and "score" in result:
print(f" {metric.capitalize()}: {result['score']:.2f}")
if "components" in result:
for component, score in result["components"].items():
print(f" • {component}: {score:.2f}")
Research Applications¶
Cognitive Science Studies¶
Model human cognitive phenomena:
def cognitive_bias_study():
"""Study cognitive biases in artificial agents"""
# Create agents with different bias susceptibilities
rational_agent = ReasoningAgent("rational",
reasoning_config={"bias_resistance": 0.9})
biased_agent = CognitiveAgent("biased",
personality_traits={"neuroticism": 0.7}, # More anxiety = more bias
cognitive_config={"bias_resistance": 0.3})
# Test confirmation bias
confirmation_bias_test = BiasTest(
name="confirmation_bias",
setup=lambda agent: present_initial_belief(agent, "theory_X_is_true"),
test=lambda agent: present_mixed_evidence(agent),
measure=lambda agent: measure_evidence_selection_bias(agent)
)
# Test anchoring bias
anchoring_bias_test = BiasTest(
name="anchoring_bias",
setup=lambda agent: present_anchor_value(agent, 100),
test=lambda agent: ask_estimation_question(agent),
measure=lambda agent: measure_anchor_influence(agent)
)
# Test availability heuristic
availability_test = BiasTest(
name="availability_heuristic",
setup=lambda agent: expose_recent_examples(agent),
test=lambda agent: ask_probability_judgment(agent),
measure=lambda agent: measure_recency_bias(agent)
)
bias_tests = [confirmation_bias_test, anchoring_bias_test, availability_test]
results = {}
for agent in [rational_agent, biased_agent]:
agent_results = {}
for test in bias_tests:
test.setup(agent)
test.test(agent)
bias_score = test.measure(agent)
agent_results[test.name] = bias_score
results[agent.agent_id] = agent_results
return results
def theory_of_mind_study():
"""Study theory of mind capabilities in agents"""
# Create agents with different ToM capabilities
basic_agent = CognitiveAgent("basic")
advanced_agent = MetaCognitiveAgent("advanced",
meta_config={"theory_of_mind": True})
# False belief task
def false_belief_task(agent, other_agent):
"""Classic false belief task"""
# Setup: Other agent sees object placed in location A
agent.observe_event(f"{other_agent.agent_id} sees object placed in location A")
# Other agent leaves
agent.observe_event(f"{other_agent.agent_id} leaves room")
# Object moved to location B (other agent doesn't see)
agent.observe_event("Object moved from A to B")
# Test: Where will other agent look for object?
prediction = agent.predict_behavior(other_agent, "look for object")
# Correct answer: A (where other agent believes it is)
# Incorrect answer: B (where object actually is)
return prediction.predicted_location == "A"
# Test both agents
tom_results = {}
for agent in [basic_agent, advanced_agent]:
other_agent = CognitiveAgent("other")
tom_score = false_belief_task(agent, other_agent)
tom_results[agent.agent_id] = tom_score
return tom_results
AGI Research¶
Explore artificial general intelligence:
def agi_capability_assessment():
"""Assess AGI-relevant capabilities"""
# Create advanced cognitive agent
agi_candidate = MetaCognitiveAgent(
"agi_prototype",
cognitive_config={
"reasoning_depth": 20,
"memory_capacity": 10000,
"learning_rate": 0.2,
"creativity_factor": 0.8
},
meta_config={
"self_modification": True,
"goal_generation": True,
"strategic_thinking": True
}
)
# Test suite for AGI capabilities
agi_tests = [
{
"name": "Cross-domain Transfer",
"test": lambda agent: test_cross_domain_transfer(agent),
"description": "Transfer learning across unrelated domains"
},
{
"name": "Novel Problem Solving",
"test": lambda agent: test_novel_problem_solving(agent),
"description": "Solve completely novel problems"
},
{
"name": "Creative Synthesis",
"test": lambda agent: test_creative_synthesis(agent),
"description": "Combine concepts in creative ways"
},
{
"name": "Self-Improvement",
"test": lambda agent: test_self_improvement(agent),
"description": "Improve own cognitive capabilities"
},
{
"name": "Goal Flexibility",
"test": lambda agent: test_goal_flexibility(agent),
"description": "Adapt goals based on new information"
}
]
agi_results = {}
for test in agi_tests:
score = test["test"](agi_candidate)
agi_results[test["name"]] = {
"score": score,
"description": test["description"]
}
# Calculate AGI capability score
overall_agi_score = np.mean([result["score"] for result in agi_results.values()])
agi_results["overall_agi_capability"] = overall_agi_score
return agi_results
def test_cross_domain_transfer(agent):
"""Test ability to transfer knowledge across domains"""
# Train on physics problems
physics_problems = generate_physics_problems(difficulty="medium", count=50)
for problem in physics_problems:
agent.solve_problem(problem)
agent.learn_from_experience(problem.solution_experience)
# Test on economics problems (different domain, similar abstract structure)
economics_problems = generate_economics_problems(difficulty="medium", count=10)
success_rate = 0
for problem in economics_problems:
solution = agent.solve_problem(problem)
if solution.correct:
success_rate += 1
return success_rate / len(economics_problems)
def test_novel_problem_solving(agent):
"""Test ability to solve completely novel problems"""
# Generate problems with novel structure
novel_problems = [
create_novel_logical_puzzle(),
create_novel_optimization_problem(),
create_novel_creative_challenge(),
create_novel_social_dilemma(),
create_novel_technical_problem()
]
novel_solutions = []
for problem in novel_problems:
solution = agent.solve_problem(problem)
novelty_score = evaluate_solution_novelty(solution)
effectiveness_score = evaluate_solution_effectiveness(solution)
novel_solutions.append({
"novelty": novelty_score,
"effectiveness": effectiveness_score,
"combined": (novelty_score + effectiveness_score) / 2
})
return np.mean([sol["combined"] for sol in novel_solutions])
Best Practices¶
1. Agent Design Principles¶
- Cognitive plausibility: Base designs on cognitive science
- Modular architecture: Separate concerns clearly
- Emergent behavior: Allow complex behaviors to emerge
- Individual differences: Model personality and capability variation
2. Performance Optimization¶
- Memory management: Implement realistic memory constraints
- Attention allocation: Model limited attention resources
- Computational bounds: Respect processing limitations
- Caching strategies: Cache frequently used computations
3. Validation and Testing¶
- Behavioral validation: Compare with human behavior
- Performance benchmarks: Use standardized tests
- Ablation studies: Test individual components
- Robustness testing: Test under various conditions
4. Research Applications¶
- Hypothesis-driven: Design experiments to test specific hypotheses
- Controlled variables: Isolate factors of interest
- Statistical validity: Use appropriate statistical methods
- Reproducibility: Ensure experiments can be replicated
The agent design framework in Cognito Simulation Engine provides a powerful foundation for creating sophisticated artificial cognitive agents. By combining cognitive science principles with advanced AI techniques, researchers can explore fundamental questions about intelligence, consciousness, and human-AI interaction.
Next: Learn about Memory Systems that provide the knowledge foundation for agent cognition, or explore Environment Design for creating rich simulation contexts.