CLI Usage Guide¶
This guide covers how to use the Cognito Simulation Engine command-line interface (CLI) for managing cognitive simulations, agents, and environments.
Installation and Setup¶
Install Cognito Simulation Engine¶
Basic CLI Structure¶
Global Options¶
# Show help
cognito-sim --help
# Enable verbose output
cognito-sim --verbose COMMAND
# Set configuration file
cognito-sim --config path/to/config.yaml COMMAND
# Enable debug mode
cognito-sim --debug COMMAND
# Set log level
cognito-sim --log-level DEBUG COMMAND
Core Commands¶
1. Agent Management¶
Create Agents¶
# Create a basic cognitive agent
cognito-sim agent create \
--name "research_assistant" \
--type cognitive \
--personality openness:0.8,conscientiousness:0.9 \
--output agents/research_assistant.json
# Create a learning agent with specific capabilities
cognito-sim agent create \
--name "ml_student" \
--type learning \
--learning-rate 0.01 \
--memory-capacity 10000 \
--reasoning-depth 5 \
--goals "learn_ml_fundamentals,complete_projects" \
--output agents/ml_student.json
# Create multiple agents from template
cognito-sim agent create-batch \
--template templates/student_template.yaml \
--count 5 \
--name-prefix "student_" \
--output-dir agents/classroom/
# Create specialized research agents
cognito-sim agent create \
--name "researcher" \
--type cognitive \
--specialization research \
--domain "artificial_intelligence" \
--reasoning-strategies "analytical,creative,critical" \
--memory-types "episodic,semantic,working" \
--collaboration-style "cooperative"
Manage Agents¶
# List all agents
cognito-sim agent list
# Show agent details
cognito-sim agent show research_assistant
# Update agent configuration
cognito-sim agent update research_assistant \
--personality conscientiousness:0.95 \
--add-goal "publish_research_paper"
# Clone an existing agent
cognito-sim agent clone research_assistant \
--name "research_assistant_v2" \
--modify personality.openness:0.9
# Delete agent
cognito-sim agent delete research_assistant --confirm
Agent Capabilities¶
# Test agent reasoning
cognito-sim agent test-reasoning research_assistant \
--problem "How to improve machine learning model accuracy?" \
--facts "current_accuracy:0.85,dataset_size:10000" \
--output reasoning_test.json
# Evaluate agent memory
cognito-sim agent test-memory research_assistant \
--memory-type episodic \
--query "research experiences" \
--output memory_test.json
# Test agent goal processing
cognito-sim agent test-goals research_assistant \
--scenario "research_deadline_approaching" \
--output goal_test.json
2. Environment Management¶
Create Environments¶
# Create a research laboratory environment
cognito-sim environment create \
--name "ai_research_lab" \
--type collaborative \
--size 1000 \
--resources "computing_cluster,datasets,libraries" \
--dynamics "knowledge_sharing,peer_review" \
--output environments/ai_lab.json
# Create a learning environment
cognito-sim environment create \
--name "online_classroom" \
--type educational \
--capacity 30 \
--learning-resources "lectures,assignments,forums" \
--assessment-system "automated" \
--collaboration "study_groups"
# Create competitive environment
cognito-sim environment create \
--name "ml_competition" \
--type competitive \
--competition-type "kaggle_style" \
--evaluation-metric "accuracy" \
--time-limit "7_days" \
--leaderboard "public"
Manage Environments¶
# List environments
cognito-sim environment list
# Show environment details
cognito-sim environment show ai_research_lab
# Update environment
cognito-sim environment update ai_research_lab \
--add-resource "new_gpu_cluster" \
--modify dynamics.collaboration_frequency:0.8
# Add agents to environment
cognito-sim environment add-agents ai_research_lab \
research_assistant ml_student researcher
# Remove agents from environment
cognito-sim environment remove-agents ai_research_lab \
ml_student
Environment Monitoring¶
# Monitor environment state
cognito-sim environment monitor ai_research_lab \
--duration 3600 \
--interval 60 \
--metrics "agent_interactions,knowledge_exchange,goal_progress" \
--output monitoring_log.json
# Generate environment report
cognito-sim environment report ai_research_lab \
--period "last_week" \
--include-agents \
--include-interactions \
--output reports/lab_report.html
3. Simulation Management¶
Run Simulations¶
# Run basic simulation
cognito-sim simulation run \
--environment ai_research_lab \
--agents research_assistant,ml_student \
--duration 3600 \
--output simulation_results.json
# Run educational simulation
cognito-sim simulation run \
--environment online_classroom \
--scenario "machine_learning_course" \
--duration 7200 \
--real-time-factor 0.1 \
--save-state simulation_state.pkl
# Run competition simulation
cognito-sim simulation run \
--environment ml_competition \
--scenario "computer_vision_challenge" \
--participants 10 \
--time-limit 604800 \
--evaluation-frequency 3600
Advanced Simulation Options¶
# Run simulation with custom configuration
cognito-sim simulation run \
--config simulations/research_study_config.yaml \
--parameters "learning_rate:0.01,exploration_factor:0.1" \
--checkpoint-interval 600 \
--resume-from checkpoint_001.pkl
# Run batch simulations
cognito-sim simulation batch \
--config-template templates/experiment_template.yaml \
--parameter-grid parameters/grid_search.yaml \
--parallel-jobs 4 \
--output-dir batch_results/
# Run interactive simulation
cognito-sim simulation interactive \
--environment ai_research_lab \
--agents research_assistant \
--step-mode \
--debug-mode
Simulation Control¶
# Pause simulation
cognito-sim simulation pause simulation_001
# Resume simulation
cognito-sim simulation resume simulation_001
# Stop simulation
cognito-sim simulation stop simulation_001
# Get simulation status
cognito-sim simulation status simulation_001
# List running simulations
cognito-sim simulation list --status running
4. Memory and Knowledge Management¶
Memory Operations¶
# Import knowledge into agent memory
cognito-sim memory import research_assistant \
--source "knowledge_base.json" \
--memory-type semantic \
--confidence-threshold 0.7
# Export agent memory
cognito-sim memory export research_assistant \
--memory-types "episodic,semantic" \
--format json \
--output agent_memory_backup.json
# Search agent memory
cognito-sim memory search research_assistant \
--query "machine learning algorithms" \
--memory-types "all" \
--max-results 20
# Clean up agent memory
cognito-sim memory cleanup research_assistant \
--remove-duplicates \
--confidence-threshold 0.3 \
--age-threshold 86400
Knowledge Base Management¶
# Create knowledge base
cognito-sim knowledge create \
--name "ml_knowledge_base" \
--domain "machine_learning" \
--sources "textbooks,papers,tutorials" \
--structure "hierarchical"
# Add knowledge to base
cognito-sim knowledge add ml_knowledge_base \
--source "new_research_papers.json" \
--validate \
--update-existing
# Query knowledge base
cognito-sim knowledge query ml_knowledge_base \
--question "What are the best practices for neural network training?" \
--context "beginner_level" \
--format "summary"
# Share knowledge base with agents
cognito-sim knowledge share ml_knowledge_base \
--agents "research_assistant,ml_student" \
--access-level "read_write"
5. Analysis and Reporting¶
Generate Reports¶
# Agent performance report
cognito-sim report agent-performance research_assistant \
--period "last_month" \
--metrics "goal_achievement,learning_progress,interaction_quality" \
--format html \
--output reports/agent_performance.html
# Simulation analysis report
cognito-sim report simulation-analysis simulation_001 \
--include-agent-behaviors \
--include-environment-dynamics \
--include-goal-progression \
--output reports/simulation_analysis.pdf
# Comparative analysis
cognito-sim report compare \
--agents "research_assistant,ml_student" \
--period "last_week" \
--metrics "reasoning_efficiency,memory_usage,goal_achievement" \
--output reports/agent_comparison.html
Data Export¶
# Export simulation data
cognito-sim export simulation simulation_001 \
--format csv \
--include "agent_states,interactions,events" \
--output data/simulation_001_export.csv
# Export agent data
cognito-sim export agent research_assistant \
--format json \
--include "memory,goals,personality,history" \
--output data/research_assistant_export.json
# Export environment data
cognito-sim export environment ai_research_lab \
--format yaml \
--include "configuration,agents,resources,dynamics" \
--output data/ai_lab_export.yaml
6. Configuration Management¶
Configuration Files¶
# Generate default configuration
cognito-sim config generate \
--type full \
--output cognito_config.yaml
# Validate configuration
cognito-sim config validate cognito_config.yaml
# Show current configuration
cognito-sim config show
# Set configuration values
cognito-sim config set \
--key "simulation.default_duration" \
--value "3600"
# Reset configuration to defaults
cognito-sim config reset --confirm
Profile Management¶
# Create configuration profile
cognito-sim profile create research_profile \
--base-config research_config.yaml \
--description "Configuration for research simulations"
# Use profile
cognito-sim --profile research_profile simulation run \
--environment ai_research_lab
# List profiles
cognito-sim profile list
# Delete profile
cognito-sim profile delete research_profile --confirm
Advanced Usage Examples¶
1. Research Study Simulation¶
# Set up complete research study
#!/bin/bash
# Create research environment
cognito-sim environment create \
--name "cognitive_research_lab" \
--type collaborative \
--resources "compute_cluster,datasets,visualization_tools" \
--dynamics "peer_review,knowledge_sharing,hypothesis_testing"
# Create diverse research team
for i in {1..5}; do
cognito-sim agent create \
--name "researcher_$i" \
--type cognitive \
--specialization "research" \
--personality "openness:0.9,conscientiousness:0.8" \
--reasoning-strategies "analytical,creative" \
--goals "conduct_research,publish_papers,collaborate"
done
# Add agents to environment
cognito-sim environment add-agents cognitive_research_lab \
researcher_1 researcher_2 researcher_3 researcher_4 researcher_5
# Run research simulation
cognito-sim simulation run \
--environment cognitive_research_lab \
--scenario "agi_research_project" \
--duration 86400 \
--checkpoint-interval 3600 \
--output research_simulation.json
# Generate comprehensive report
cognito-sim report simulation-analysis research_simulation \
--include-collaboration-patterns \
--include-knowledge-evolution \
--include-breakthrough-events \
--output reports/research_study_results.html
2. Educational Assessment¶
# Educational simulation with assessment
#!/bin/bash
# Create classroom environment
cognito-sim environment create \
--name "ml_classroom" \
--type educational \
--capacity 20 \
--curriculum "machine_learning_fundamentals" \
--assessment-system "continuous"
# Create diverse student agents
cognito-sim agent create-batch \
--template templates/student_template.yaml \
--count 20 \
--personality-variation "high" \
--learning-rate-range "0.001,0.1" \
--output-dir agents/students/
# Create instructor agent
cognito-sim agent create \
--name "ml_instructor" \
--type teaching \
--expertise "machine_learning" \
--teaching-style "adaptive" \
--assessment-capability "comprehensive"
# Run educational simulation
cognito-sim simulation run \
--environment ml_classroom \
--scenario "ml_course_semester" \
--duration 2592000 \
--real-time-factor 0.001 \
--save-checkpoints
# Analyze learning outcomes
cognito-sim report educational-assessment ml_classroom \
--metrics "learning_progress,engagement,collaboration" \
--individual-reports \
--output reports/educational_assessment/
3. Cognitive Architecture Testing¶
# Test different cognitive architectures
#!/bin/bash
# Create test environment
cognito-sim environment create \
--name "cognitive_test_arena" \
--type experimental \
--challenges "reasoning,memory,learning,adaptation"
# Create agents with different architectures
architectures=("symbolic" "connectionist" "hybrid" "emergent")
for arch in "${architectures[@]}"; do
cognito-sim agent create \
--name "agent_${arch}" \
--architecture "$arch" \
--reasoning-depth 10 \
--memory-capacity 50000 \
--learning-rate 0.01 \
--goals "solve_challenges,adapt_strategies"
done
# Run comparative tests
cognito-sim simulation batch \
--environment cognitive_test_arena \
--scenarios "cognitive_challenges.yaml" \
--agents "agent_symbolic,agent_connectionist,agent_hybrid,agent_emergent" \
--repetitions 10 \
--output-dir architecture_comparison/
# Generate comparative analysis
cognito-sim report architecture-comparison \
--simulation-set architecture_comparison/ \
--metrics "reasoning_efficiency,memory_utilization,learning_speed,adaptability" \
--statistical-analysis \
--output reports/architecture_comparison.html
CLI Best Practices¶
1. Configuration Management¶
# Use configuration files for complex setups
cognito-sim --config production_config.yaml simulation run
# Use profiles for different use cases
cognito-sim --profile research_profile agent create
# Validate configurations before use
cognito-sim config validate custom_config.yaml
2. Resource Management¶
# Monitor system resources during long simulations
cognito-sim simulation run --monitor-resources
# Use batch processing for multiple experiments
cognito-sim simulation batch --parallel-jobs 4
# Save checkpoints for long-running simulations
cognito-sim simulation run --checkpoint-interval 600
3. Data Management¶
# Regular backups of important agents and environments
cognito-sim export agent important_agent --output backups/
# Clean up old simulation data
cognito-sim cleanup --older-than 30d --simulation-data
# Compress large datasets
cognito-sim export simulation large_sim --compress --output compressed/
4. Debugging and Development¶
# Use debug mode for development
cognito-sim --debug simulation run
# Interactive mode for testing
cognito-sim simulation interactive --step-mode
# Verbose logging for troubleshooting
cognito-sim --log-level DEBUG --verbose simulation run
Integration with Other Tools¶
1. Jupyter Notebooks¶
# Export simulation data for Jupyter analysis
cognito-sim export simulation sim_001 --format jupyter
# Generate notebook template for analysis
cognito-sim generate notebook-template \
--simulation sim_001 \
--analysis-type "agent_behavior" \
--output analysis_template.ipynb
2. External Data Sources¶
# Import data from external sources
cognito-sim import data \
--source "external_dataset.csv" \
--target-agent research_assistant \
--memory-type semantic
# Connect to databases
cognito-sim connect database \
--type postgresql \
--connection-string "postgresql://user:pass@host:port/db" \
--agent research_assistant
3. Visualization Tools¶
# Generate visualization data
cognito-sim export visualization sim_001 \
--type "network_analysis" \
--output viz_data.json
# Create interactive dashboards
cognito-sim generate dashboard sim_001 \
--metrics "agent_interactions,goal_progress,memory_usage" \
--output dashboard.html
Troubleshooting¶
Common Issues¶
# Check system requirements
cognito-sim doctor
# Validate agent configurations
cognito-sim agent validate research_assistant
# Test environment connectivity
cognito-sim environment test ai_research_lab
# Debug simulation issues
cognito-sim simulation debug sim_001 --verbose
Performance Optimization¶
# Profile simulation performance
cognito-sim simulation profile \
--environment test_env \
--duration 300 \
--output performance_profile.json
# Optimize agent configurations
cognito-sim agent optimize research_assistant \
--metric "reasoning_efficiency" \
--output optimized_config.json
# Memory usage analysis
cognito-sim memory analyze research_assistant \
--report memory_usage_report.html
The CLI provides comprehensive tools for managing all aspects of cognitive simulations. Use these commands to create sophisticated research studies, educational simulations, and cognitive architecture experiments.
Next: Explore API Reference for programmatic access, or see Examples for complete simulation scenarios.