Your First Advanced Simulation¶
Now that you've mastered the basics, let's build a more sophisticated cognitive simulation with multiple agents, complex goals, and advanced interactions.
Overview¶
In this tutorial, we'll create a multi-agent research scenario where different cognitive agents collaborate to solve complex problems, demonstrating:
- Multi-agent coordination and communication
- Complex goal hierarchies with sub-goals
- Memory sharing and knowledge transfer
- Emergent collaborative behaviors
- Real-time monitoring and analysis
Scenario: Collaborative AGI Research Team¶
We'll simulate a research team working on AGI alignment challenges:
- Dr. Alice (CognitiveAgent) - Lead researcher with broad expertise
- Prof. Bob (ReasoningAgent) - Logic and formal methods specialist
- Charlie (LearningAgent) - Adaptive learning and experimentation
- Dr. Diana (MetaCognitiveAgent) - Metacognitive monitoring and strategy
Step 1: Advanced Environment Setup¶
from cognito_sim_engine import *
import numpy as np
import matplotlib.pyplot as plt
# Create a sophisticated research environment
research_lab = CognitiveEnvironment("Advanced AGI Research Laboratory")
# Add specialized equipment and resources
research_lab.add_object(
"quantum_computer",
{
"type": "computational_resource",
"processing_power": 1000,
"quantum_capabilities": True,
"location": {"x": 10, "y": 5, "z": 0}
}
)
research_lab.add_object(
"agi_simulation_cluster",
{
"type": "computational_resource",
"processing_power": 500,
"parallel_agents": 100,
"location": {"x": 15, "y": 5, "z": 0}
}
)
research_lab.add_object(
"knowledge_database",
{
"type": "information_resource",
"domains": ["cognitive_science", "ai_safety", "formal_methods"],
"papers": 50000,
"location": {"x": 5, "y": 10, "z": 0}
}
)
# Advanced simulation configuration
advanced_config = SimulationConfig(
max_cycles=100,
working_memory_capacity=7,
enable_metacognition=True,
enable_learning=True,
enable_collaboration=True,
communication_bandwidth=5, # Number of messages per cycle
knowledge_sharing=True,
random_seed=42
)
print("🏗️ Advanced research environment configured")
Step 2: Create Specialized Agent Team¶
# Create a diverse team of cognitive agents
team = {}
# 1. Lead Researcher - General cognitive architecture
team['alice'] = CognitiveAgent(
agent_id="alice_lead",
name="Dr. Alice Cognitive",
personality=AgentPersonality(
curiosity=0.9,
caution=0.7,
sociability=0.8,
analyticalness=0.8,
leadership=0.9
),
expertise_domains=["cognitive_architectures", "agi_research", "team_coordination"]
)
# 2. Logic Specialist - Enhanced reasoning capabilities
team['bob'] = ReasoningAgent(
agent_id="bob_logic",
name="Prof. Bob Logic",
personality=AgentPersonality(
curiosity=0.7,
caution=0.9,
sociability=0.6,
analyticalness=0.95,
precision=0.9
),
expertise_domains=["formal_methods", "logical_reasoning", "proof_systems"]
)
# 3. Learning Specialist - Adaptive and experimental
team['charlie'] = LearningAgent(
agent_id="charlie_adaptive",
name="Charlie Adaptive",
personality=AgentPersonality(
curiosity=0.95,
caution=0.4,
sociability=0.7,
analyticalness=0.75,
exploration=0.9
),
expertise_domains=["machine_learning", "experimentation", "adaptation"]
)
# 4. Metacognitive Monitor - Strategic oversight
team['diana'] = MetaCognitiveAgent(
agent_id="diana_meta",
name="Dr. Diana Meta",
personality=AgentPersonality(
curiosity=0.8,
caution=0.8,
sociability=0.6,
analyticalness=0.9,
strategic_thinking=0.95
),
expertise_domains=["metacognition", "strategy", "cognitive_monitoring"]
)
# Add all agents to environment
for name, agent in team.items():
research_lab.add_agent(agent.agent_id, {"x": np.random.randint(0, 20), "y": np.random.randint(0, 20), "z": 0})
print(f"🧑🔬 Added {agent.name} to research team")
print(f"\n👥 Research team assembled with {len(team)} agents")
Step 3: Define Complex Research Goals¶
# Create a hierarchy of research goals
main_goal = Goal(
description="Develop safe and aligned AGI architecture",
priority=1.0,
target_facts=[
Fact("agi_architecture", ["designed"], confidence=0.8),
Fact("safety_verified", ["architecture"], confidence=0.9),
Fact("alignment_proven", ["architecture"], confidence=0.8)
],
deadline_cycles=80
)
# Sub-goals for different aspects
subgoals = [
Goal(
description="Design cognitive architecture framework",
priority=0.9,
target_facts=[Fact("framework_designed", ["cognitive_architecture"])],
parent_goal=main_goal.id
),
Goal(
description="Implement safety mechanisms",
priority=0.9,
target_facts=[Fact("safety_mechanisms", ["implemented"])],
parent_goal=main_goal.id
),
Goal(
description="Prove alignment properties",
priority=0.8,
target_facts=[Fact("alignment_proof", ["completed"])],
parent_goal=main_goal.id
),
Goal(
description="Validate through simulation",
priority=0.7,
target_facts=[Fact("validation_complete", ["simulation"])],
parent_goal=main_goal.id
)
]
# Assign goals to appropriate agents
team['alice'].add_goal(main_goal) # Lead researcher coordinates overall goal
team['alice'].add_goal(subgoals[0]) # Architecture design
team['bob'].add_goal(subgoals[2]) # Formal proofs
team['charlie'].add_goal(subgoals[3]) # Validation experiments
team['diana'].add_goal(subgoals[1]) # Safety mechanisms
print("🎯 Complex goal hierarchy established")
print(f" Main goal: {main_goal.description}")
for i, subgoal in enumerate(subgoals):
print(f" Subgoal {i+1}: {subgoal.description}")
Step 4: Initialize Shared Knowledge Base¶
# Create shared domain knowledge
shared_knowledge = [
# Cognitive science foundations
Fact("cognitive_architecture", ["requires", "memory_systems"], confidence=0.9),
Fact("cognitive_architecture", ["requires", "reasoning_engine"], confidence=0.9),
Fact("cognitive_architecture", ["requires", "goal_management"], confidence=0.8),
# Safety requirements
Fact("safe_agi", ["requires", "value_alignment"], confidence=0.95),
Fact("safe_agi", ["requires", "capability_control"], confidence=0.9),
Fact("safe_agi", ["requires", "interpretability"], confidence=0.85),
# Technical constraints
Fact("agi_system", ["has_constraint", "computational_limits"], confidence=0.8),
Fact("agi_system", ["has_constraint", "ethical_bounds"], confidence=1.0),
# Research methodologies
Fact("formal_verification", ["enables", "safety_proof"], confidence=0.9),
Fact("simulation_testing", ["enables", "behavior_validation"], confidence=0.8),
Fact("collaborative_research", ["improves", "solution_quality"], confidence=0.85)
]
# Add shared knowledge to all agents
for agent in team.values():
for fact in shared_knowledge:
agent.inference_engine.reasoner.add_fact(fact)
print(f"📚 Shared knowledge base established with {len(shared_knowledge)} facts")
Step 5: Enable Advanced Communication¶
# Communication protocols for agent coordination
class ResearchCommunication:
def __init__(self, agents):
self.agents = agents
self.message_history = []
self.knowledge_sharing_log = []
def broadcast_discovery(self, sender_id, discovery):
"""Share new discoveries with the team"""
message = {
"type": "discovery",
"sender": sender_id,
"content": discovery,
"timestamp": time.time()
}
self.message_history.append(message)
# Distribute to other agents
for agent_id, agent in self.agents.items():
if agent_id != sender_id:
agent.receive_message(message)
print(f"📡 {sender_id} shared discovery: {discovery[:50]}...")
def coordinate_goal(self, coordinator_id, goal_update):
"""Coordinate goal progress across team"""
message = {
"type": "coordination",
"sender": coordinator_id,
"content": goal_update,
"timestamp": time.time()
}
self.message_history.append(message)
for agent_id, agent in self.agents.items():
if agent_id != coordinator_id:
agent.receive_coordination(message)
print(f"🎯 {coordinator_id} coordinated: {goal_update}")
def share_insight(self, sender_id, insight):
"""Share metacognitive insights"""
message = {
"type": "insight",
"sender": sender_id,
"content": insight,
"timestamp": time.time()
}
self.message_history.append(message)
self.knowledge_sharing_log.append(message)
for agent_id, agent in self.agents.items():
if agent_id != sender_id:
agent.receive_insight(message)
print(f"💡 {sender_id} shared insight: {insight}")
# Initialize communication system
comm_system = ResearchCommunication(team)
print("🔗 Advanced communication system initialized")
Step 6: Run Advanced Simulation¶
# Create the cognitive engine with advanced configuration
engine = CognitiveEngine(config=advanced_config, environment=research_lab)
# Add communication system callbacks
def on_cycle_complete(cycle_num):
"""Handle end-of-cycle communication and coordination"""
# Alice coordinates every 10 cycles
if cycle_num % 10 == 0 and cycle_num > 0:
goal_progress = f"Cycle {cycle_num}: Evaluating progress on AGI architecture"
comm_system.coordinate_goal("alice_lead", goal_progress)
# Diana shares metacognitive insights every 15 cycles
if cycle_num % 15 == 0 and cycle_num > 0:
insight = f"Team cognitive load assessment at cycle {cycle_num}"
comm_system.share_insight("diana_meta", insight)
# Check for breakthroughs and discoveries
for agent_id, agent in team.items():
recent_memories = agent.memory_manager.get_recent_memories(limit=3)
for memory in recent_memories:
if "breakthrough" in memory.content.lower() or "discovery" in memory.content.lower():
comm_system.broadcast_discovery(agent_id, memory.content)
engine.add_callback('cycle_complete', on_cycle_complete)
# Monitoring and metrics collection
simulation_metrics = {
"goal_progress": [],
"collaboration_events": [],
"knowledge_transfers": [],
"cognitive_load": [],
"innovation_events": []
}
def collect_metrics(cycle_num):
"""Collect detailed simulation metrics"""
# Goal progress tracking
total_goals = sum(len(agent.current_goals) for agent in team.values())
completed_goals = sum(
len([g for g in agent.current_goals if g.status.value == "achieved"])
for agent in team.values()
)
goal_completion_rate = completed_goals / max(total_goals, 1)
simulation_metrics["goal_progress"].append({
"cycle": cycle_num,
"completion_rate": goal_completion_rate,
"total_goals": total_goals,
"completed_goals": completed_goals
})
# Collaboration tracking
collaboration_score = len(comm_system.message_history) / max(cycle_num, 1)
simulation_metrics["collaboration_events"].append({
"cycle": cycle_num,
"messages": len(comm_system.message_history),
"collaboration_rate": collaboration_score
})
# Cognitive load assessment
avg_memory_load = np.mean([
len(agent.memory_manager.working_memory.get_items()) / agent.memory_manager.working_memory.capacity
for agent in team.values()
])
simulation_metrics["cognitive_load"].append({
"cycle": cycle_num,
"average_load": avg_memory_load
})
engine.add_callback('cycle_complete', collect_metrics)
print("🚀 Starting advanced multi-agent simulation...")
print("=" * 60)
# Run the simulation
final_metrics = engine.run_simulation()
print("=" * 60)
print("✅ Advanced simulation completed!")
Step 7: Advanced Analysis and Visualization¶
# Analyze simulation results
def analyze_team_performance():
"""Comprehensive analysis of team performance"""
print("\n📊 TEAM PERFORMANCE ANALYSIS")
print("=" * 50)
# Individual agent performance
for name, agent in team.items():
state = agent.get_cognitive_state()
print(f"\n{agent.name} ({name}):")
print(f" 🎯 Goals: {len(agent.current_goals)} active")
print(f" 🧠 Memory: {state['memory']['total_items']} items")
print(f" ⚡ Actions: {agent.total_actions}")
print(f" 🤝 Collaboration: {state.get('collaboration_score', 0):.2f}")
# Team coordination metrics
print(f"\n🤝 TEAM COORDINATION:")
print(f" 📨 Messages exchanged: {len(comm_system.message_history)}")
print(f" 💡 Knowledge transfers: {len(comm_system.knowledge_sharing_log)}")
print(f" 🔄 Communication rate: {len(comm_system.message_history) / final_metrics.total_cycles:.2f} msg/cycle")
# Goal achievement analysis
all_goals = []
for agent in team.values():
all_goals.extend(agent.current_goals)
achieved_goals = [g for g in all_goals if g.status.value == "achieved"]
active_goals = [g for g in all_goals if g.status.value == "active"]
print(f"\n🎯 GOAL ACHIEVEMENT:")
print(f" ✅ Achieved: {len(achieved_goals)}")
print(f" 🔄 Active: {len(active_goals)}")
print(f" 📈 Success rate: {len(achieved_goals) / max(len(all_goals), 1) * 100:.1f}%")
return {
"team_size": len(team),
"total_goals": len(all_goals),
"achieved_goals": len(achieved_goals),
"messages": len(comm_system.message_history),
"cycles": final_metrics.total_cycles
}
# Visualization of team dynamics
def visualize_simulation_results():
"""Create visualizations of simulation results"""
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(15, 10))
# Goal progress over time
cycles = [m["cycle"] for m in simulation_metrics["goal_progress"]]
completion_rates = [m["completion_rate"] for m in simulation_metrics["goal_progress"]]
ax1.plot(cycles, completion_rates, 'b-', linewidth=2, marker='o')
ax1.set_title('Goal Completion Progress')
ax1.set_xlabel('Simulation Cycle')
ax1.set_ylabel('Completion Rate')
ax1.grid(True, alpha=0.3)
# Collaboration activity
collab_cycles = [m["cycle"] for m in simulation_metrics["collaboration_events"]]
collab_rates = [m["collaboration_rate"] for m in simulation_metrics["collaboration_events"]]
ax2.plot(collab_cycles, collab_rates, 'g-', linewidth=2, marker='s')
ax2.set_title('Collaboration Activity')
ax2.set_xlabel('Simulation Cycle')
ax2.set_ylabel('Messages per Cycle')
ax2.grid(True, alpha=0.3)
# Cognitive load distribution
load_cycles = [m["cycle"] for m in simulation_metrics["cognitive_load"]]
avg_loads = [m["average_load"] for m in simulation_metrics["cognitive_load"]]
ax3.plot(load_cycles, avg_loads, 'r-', linewidth=2, marker='^')
ax3.axhline(y=0.8, color='orange', linestyle='--', label='High Load Threshold')
ax3.set_title('Team Cognitive Load')
ax3.set_xlabel('Simulation Cycle')
ax3.set_ylabel('Average Memory Load')
ax3.legend()
ax3.grid(True, alpha=0.3)
# Agent performance comparison
agent_names = [agent.name.split()[-1] for agent in team.values()]
agent_actions = [agent.total_actions for agent in team.values()]
bars = ax4.bar(agent_names, agent_actions, color=['blue', 'green', 'red', 'purple'])
ax4.set_title('Individual Agent Activity')
ax4.set_xlabel('Agent')
ax4.set_ylabel('Total Actions')
# Add value labels on bars
for bar in bars:
height = bar.get_height()
ax4.text(bar.get_x() + bar.get_width()/2., height,
f'{int(height)}', ha='center', va='bottom')
plt.tight_layout()
plt.savefig('advanced_simulation_results.png', dpi=300, bbox_inches='tight')
plt.show()
# Run analysis
performance_summary = analyze_team_performance()
visualize_simulation_results()
print(f"\n🎉 Advanced simulation analysis complete!")
print(f"📈 Key insights:")
print(f" • Team achieved {performance_summary['achieved_goals']}/{performance_summary['total_goals']} goals")
print(f" • {performance_summary['messages']} collaborative interactions")
print(f" • Simulation ran for {performance_summary['cycles']} cognitive cycles")
print(f" • Average {performance_summary['messages']/performance_summary['cycles']:.1f} messages per cycle")
Key Learning Outcomes¶
1. Multi-Agent Coordination¶
- Communication protocols enable knowledge sharing
- Role specialization improves team effectiveness
- Emergent behaviors arise from agent interactions
2. Complex Goal Management¶
- Goal hierarchies break down complex objectives
- Dynamic prioritization adapts to changing conditions
- Collaborative achievement leverages team strengths
3. Advanced Cognitive Modeling¶
- Realistic constraints create believable behavior
- Metacognitive monitoring provides strategic oversight
- Learning adaptation improves performance over time
4. Research Applications¶
- AGI development benefit from collaborative cognitive modeling
- Safety research requires multi-perspective analysis
- Cognitive science insights emerge from realistic simulation
Next Steps¶
Now you're ready to:
- Design custom scenarios for your research domain
- Implement domain-specific knowledge and reasoning rules
- Analyze emergent behaviors in multi-agent systems
- Extend the framework with new agent capabilities
- Publish research findings using Cognito Simulation Engine
Congratulations! You've mastered advanced cognitive simulation with multiple agents, complex goals, and realistic cognitive constraints. You're now equipped to tackle cutting-edge AGI research challenges! 🧠✨