Skip to content

Your First Advanced Simulation

Now that you've mastered the basics, let's build a more sophisticated cognitive simulation with multiple agents, complex goals, and advanced interactions.

Overview

In this tutorial, we'll create a multi-agent research scenario where different cognitive agents collaborate to solve complex problems, demonstrating:

  • Multi-agent coordination and communication
  • Complex goal hierarchies with sub-goals
  • Memory sharing and knowledge transfer
  • Emergent collaborative behaviors
  • Real-time monitoring and analysis

Scenario: Collaborative AGI Research Team

We'll simulate a research team working on AGI alignment challenges:

  • Dr. Alice (CognitiveAgent) - Lead researcher with broad expertise
  • Prof. Bob (ReasoningAgent) - Logic and formal methods specialist
  • Charlie (LearningAgent) - Adaptive learning and experimentation
  • Dr. Diana (MetaCognitiveAgent) - Metacognitive monitoring and strategy

Step 1: Advanced Environment Setup

from cognito_sim_engine import *
import numpy as np
import matplotlib.pyplot as plt

# Create a sophisticated research environment
research_lab = CognitiveEnvironment("Advanced AGI Research Laboratory")

# Add specialized equipment and resources
research_lab.add_object(
    "quantum_computer", 
    {
        "type": "computational_resource",
        "processing_power": 1000,
        "quantum_capabilities": True,
        "location": {"x": 10, "y": 5, "z": 0}
    }
)

research_lab.add_object(
    "agi_simulation_cluster",
    {
        "type": "computational_resource", 
        "processing_power": 500,
        "parallel_agents": 100,
        "location": {"x": 15, "y": 5, "z": 0}
    }
)

research_lab.add_object(
    "knowledge_database",
    {
        "type": "information_resource",
        "domains": ["cognitive_science", "ai_safety", "formal_methods"],
        "papers": 50000,
        "location": {"x": 5, "y": 10, "z": 0}
    }
)

# Advanced simulation configuration
advanced_config = SimulationConfig(
    max_cycles=100,
    working_memory_capacity=7,
    enable_metacognition=True,
    enable_learning=True,
    enable_collaboration=True,
    communication_bandwidth=5,  # Number of messages per cycle
    knowledge_sharing=True,
    random_seed=42
)

print("🏗️ Advanced research environment configured")

Step 2: Create Specialized Agent Team

# Create a diverse team of cognitive agents
team = {}

# 1. Lead Researcher - General cognitive architecture
team['alice'] = CognitiveAgent(
    agent_id="alice_lead",
    name="Dr. Alice Cognitive",
    personality=AgentPersonality(
        curiosity=0.9,
        caution=0.7,
        sociability=0.8,
        analyticalness=0.8,
        leadership=0.9
    ),
    expertise_domains=["cognitive_architectures", "agi_research", "team_coordination"]
)

# 2. Logic Specialist - Enhanced reasoning capabilities  
team['bob'] = ReasoningAgent(
    agent_id="bob_logic",
    name="Prof. Bob Logic", 
    personality=AgentPersonality(
        curiosity=0.7,
        caution=0.9,
        sociability=0.6,
        analyticalness=0.95,
        precision=0.9
    ),
    expertise_domains=["formal_methods", "logical_reasoning", "proof_systems"]
)

# 3. Learning Specialist - Adaptive and experimental
team['charlie'] = LearningAgent(
    agent_id="charlie_adaptive",
    name="Charlie Adaptive",
    personality=AgentPersonality(
        curiosity=0.95,
        caution=0.4,
        sociability=0.7,
        analyticalness=0.75,
        exploration=0.9
    ),
    expertise_domains=["machine_learning", "experimentation", "adaptation"]
)

# 4. Metacognitive Monitor - Strategic oversight
team['diana'] = MetaCognitiveAgent(
    agent_id="diana_meta", 
    name="Dr. Diana Meta",
    personality=AgentPersonality(
        curiosity=0.8,
        caution=0.8,
        sociability=0.6,
        analyticalness=0.9,
        strategic_thinking=0.95
    ),
    expertise_domains=["metacognition", "strategy", "cognitive_monitoring"]
)

# Add all agents to environment
for name, agent in team.items():
    research_lab.add_agent(agent.agent_id, {"x": np.random.randint(0, 20), "y": np.random.randint(0, 20), "z": 0})
    print(f"🧑‍🔬 Added {agent.name} to research team")

print(f"\n👥 Research team assembled with {len(team)} agents")

Step 3: Define Complex Research Goals

# Create a hierarchy of research goals
main_goal = Goal(
    description="Develop safe and aligned AGI architecture",
    priority=1.0,
    target_facts=[
        Fact("agi_architecture", ["designed"], confidence=0.8),
        Fact("safety_verified", ["architecture"], confidence=0.9),
        Fact("alignment_proven", ["architecture"], confidence=0.8)
    ],
    deadline_cycles=80
)

# Sub-goals for different aspects
subgoals = [
    Goal(
        description="Design cognitive architecture framework",
        priority=0.9,
        target_facts=[Fact("framework_designed", ["cognitive_architecture"])],
        parent_goal=main_goal.id
    ),
    Goal(
        description="Implement safety mechanisms",
        priority=0.9,
        target_facts=[Fact("safety_mechanisms", ["implemented"])],
        parent_goal=main_goal.id
    ),
    Goal(
        description="Prove alignment properties",
        priority=0.8,
        target_facts=[Fact("alignment_proof", ["completed"])],
        parent_goal=main_goal.id
    ),
    Goal(
        description="Validate through simulation",
        priority=0.7,
        target_facts=[Fact("validation_complete", ["simulation"])],
        parent_goal=main_goal.id
    )
]

# Assign goals to appropriate agents
team['alice'].add_goal(main_goal)  # Lead researcher coordinates overall goal
team['alice'].add_goal(subgoals[0])  # Architecture design

team['bob'].add_goal(subgoals[2])   # Formal proofs
team['charlie'].add_goal(subgoals[3])  # Validation experiments
team['diana'].add_goal(subgoals[1])    # Safety mechanisms

print("🎯 Complex goal hierarchy established")
print(f"   Main goal: {main_goal.description}")
for i, subgoal in enumerate(subgoals):
    print(f"   Subgoal {i+1}: {subgoal.description}")

Step 4: Initialize Shared Knowledge Base

# Create shared domain knowledge
shared_knowledge = [
    # Cognitive science foundations
    Fact("cognitive_architecture", ["requires", "memory_systems"], confidence=0.9),
    Fact("cognitive_architecture", ["requires", "reasoning_engine"], confidence=0.9),
    Fact("cognitive_architecture", ["requires", "goal_management"], confidence=0.8),

    # Safety requirements
    Fact("safe_agi", ["requires", "value_alignment"], confidence=0.95),
    Fact("safe_agi", ["requires", "capability_control"], confidence=0.9),
    Fact("safe_agi", ["requires", "interpretability"], confidence=0.85),

    # Technical constraints
    Fact("agi_system", ["has_constraint", "computational_limits"], confidence=0.8),
    Fact("agi_system", ["has_constraint", "ethical_bounds"], confidence=1.0),

    # Research methodologies
    Fact("formal_verification", ["enables", "safety_proof"], confidence=0.9),
    Fact("simulation_testing", ["enables", "behavior_validation"], confidence=0.8),
    Fact("collaborative_research", ["improves", "solution_quality"], confidence=0.85)
]

# Add shared knowledge to all agents
for agent in team.values():
    for fact in shared_knowledge:
        agent.inference_engine.reasoner.add_fact(fact)

print(f"📚 Shared knowledge base established with {len(shared_knowledge)} facts")

Step 5: Enable Advanced Communication

# Communication protocols for agent coordination
class ResearchCommunication:
    def __init__(self, agents):
        self.agents = agents
        self.message_history = []
        self.knowledge_sharing_log = []

    def broadcast_discovery(self, sender_id, discovery):
        """Share new discoveries with the team"""
        message = {
            "type": "discovery",
            "sender": sender_id,
            "content": discovery,
            "timestamp": time.time()
        }

        self.message_history.append(message)

        # Distribute to other agents
        for agent_id, agent in self.agents.items():
            if agent_id != sender_id:
                agent.receive_message(message)

        print(f"📡 {sender_id} shared discovery: {discovery[:50]}...")

    def coordinate_goal(self, coordinator_id, goal_update):
        """Coordinate goal progress across team"""
        message = {
            "type": "coordination",
            "sender": coordinator_id, 
            "content": goal_update,
            "timestamp": time.time()
        }

        self.message_history.append(message)

        for agent_id, agent in self.agents.items():
            if agent_id != coordinator_id:
                agent.receive_coordination(message)

        print(f"🎯 {coordinator_id} coordinated: {goal_update}")

    def share_insight(self, sender_id, insight):
        """Share metacognitive insights"""
        message = {
            "type": "insight",
            "sender": sender_id,
            "content": insight,
            "timestamp": time.time()
        }

        self.message_history.append(message)
        self.knowledge_sharing_log.append(message)

        for agent_id, agent in self.agents.items():
            if agent_id != sender_id:
                agent.receive_insight(message)

        print(f"💡 {sender_id} shared insight: {insight}")

# Initialize communication system
comm_system = ResearchCommunication(team)
print("🔗 Advanced communication system initialized")

Step 6: Run Advanced Simulation

# Create the cognitive engine with advanced configuration
engine = CognitiveEngine(config=advanced_config, environment=research_lab)

# Add communication system callbacks
def on_cycle_complete(cycle_num):
    """Handle end-of-cycle communication and coordination"""

    # Alice coordinates every 10 cycles
    if cycle_num % 10 == 0 and cycle_num > 0:
        goal_progress = f"Cycle {cycle_num}: Evaluating progress on AGI architecture"
        comm_system.coordinate_goal("alice_lead", goal_progress)

    # Diana shares metacognitive insights every 15 cycles
    if cycle_num % 15 == 0 and cycle_num > 0:
        insight = f"Team cognitive load assessment at cycle {cycle_num}"
        comm_system.share_insight("diana_meta", insight)

    # Check for breakthroughs and discoveries
    for agent_id, agent in team.items():
        recent_memories = agent.memory_manager.get_recent_memories(limit=3)
        for memory in recent_memories:
            if "breakthrough" in memory.content.lower() or "discovery" in memory.content.lower():
                comm_system.broadcast_discovery(agent_id, memory.content)

engine.add_callback('cycle_complete', on_cycle_complete)

# Monitoring and metrics collection
simulation_metrics = {
    "goal_progress": [],
    "collaboration_events": [],
    "knowledge_transfers": [],
    "cognitive_load": [],
    "innovation_events": []
}

def collect_metrics(cycle_num):
    """Collect detailed simulation metrics"""

    # Goal progress tracking
    total_goals = sum(len(agent.current_goals) for agent in team.values())
    completed_goals = sum(
        len([g for g in agent.current_goals if g.status.value == "achieved"]) 
        for agent in team.values()
    )

    goal_completion_rate = completed_goals / max(total_goals, 1)
    simulation_metrics["goal_progress"].append({
        "cycle": cycle_num,
        "completion_rate": goal_completion_rate,
        "total_goals": total_goals,
        "completed_goals": completed_goals
    })

    # Collaboration tracking
    collaboration_score = len(comm_system.message_history) / max(cycle_num, 1)
    simulation_metrics["collaboration_events"].append({
        "cycle": cycle_num,
        "messages": len(comm_system.message_history),
        "collaboration_rate": collaboration_score
    })

    # Cognitive load assessment
    avg_memory_load = np.mean([
        len(agent.memory_manager.working_memory.get_items()) / agent.memory_manager.working_memory.capacity
        for agent in team.values()
    ])

    simulation_metrics["cognitive_load"].append({
        "cycle": cycle_num,
        "average_load": avg_memory_load
    })

engine.add_callback('cycle_complete', collect_metrics)

print("🚀 Starting advanced multi-agent simulation...")
print("=" * 60)

# Run the simulation
final_metrics = engine.run_simulation()

print("=" * 60)
print("✅ Advanced simulation completed!")

Step 7: Advanced Analysis and Visualization

# Analyze simulation results
def analyze_team_performance():
    """Comprehensive analysis of team performance"""

    print("\n📊 TEAM PERFORMANCE ANALYSIS")
    print("=" * 50)

    # Individual agent performance
    for name, agent in team.items():
        state = agent.get_cognitive_state()
        print(f"\n{agent.name} ({name}):")
        print(f"  🎯 Goals: {len(agent.current_goals)} active")
        print(f"  🧠 Memory: {state['memory']['total_items']} items")
        print(f"  ⚡ Actions: {agent.total_actions}")
        print(f"  🤝 Collaboration: {state.get('collaboration_score', 0):.2f}")

    # Team coordination metrics
    print(f"\n🤝 TEAM COORDINATION:")
    print(f"  📨 Messages exchanged: {len(comm_system.message_history)}")
    print(f"  💡 Knowledge transfers: {len(comm_system.knowledge_sharing_log)}")
    print(f"  🔄 Communication rate: {len(comm_system.message_history) / final_metrics.total_cycles:.2f} msg/cycle")

    # Goal achievement analysis
    all_goals = []
    for agent in team.values():
        all_goals.extend(agent.current_goals)

    achieved_goals = [g for g in all_goals if g.status.value == "achieved"]
    active_goals = [g for g in all_goals if g.status.value == "active"]

    print(f"\n🎯 GOAL ACHIEVEMENT:")
    print(f"  ✅ Achieved: {len(achieved_goals)}")
    print(f"  🔄 Active: {len(active_goals)}")
    print(f"  📈 Success rate: {len(achieved_goals) / max(len(all_goals), 1) * 100:.1f}%")

    return {
        "team_size": len(team),
        "total_goals": len(all_goals),
        "achieved_goals": len(achieved_goals),
        "messages": len(comm_system.message_history),
        "cycles": final_metrics.total_cycles
    }

# Visualization of team dynamics
def visualize_simulation_results():
    """Create visualizations of simulation results"""

    fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(15, 10))

    # Goal progress over time
    cycles = [m["cycle"] for m in simulation_metrics["goal_progress"]]
    completion_rates = [m["completion_rate"] for m in simulation_metrics["goal_progress"]]

    ax1.plot(cycles, completion_rates, 'b-', linewidth=2, marker='o')
    ax1.set_title('Goal Completion Progress')
    ax1.set_xlabel('Simulation Cycle')
    ax1.set_ylabel('Completion Rate')
    ax1.grid(True, alpha=0.3)

    # Collaboration activity
    collab_cycles = [m["cycle"] for m in simulation_metrics["collaboration_events"]]
    collab_rates = [m["collaboration_rate"] for m in simulation_metrics["collaboration_events"]]

    ax2.plot(collab_cycles, collab_rates, 'g-', linewidth=2, marker='s')
    ax2.set_title('Collaboration Activity')
    ax2.set_xlabel('Simulation Cycle')
    ax2.set_ylabel('Messages per Cycle')
    ax2.grid(True, alpha=0.3)

    # Cognitive load distribution
    load_cycles = [m["cycle"] for m in simulation_metrics["cognitive_load"]]
    avg_loads = [m["average_load"] for m in simulation_metrics["cognitive_load"]]

    ax3.plot(load_cycles, avg_loads, 'r-', linewidth=2, marker='^')
    ax3.axhline(y=0.8, color='orange', linestyle='--', label='High Load Threshold')
    ax3.set_title('Team Cognitive Load')
    ax3.set_xlabel('Simulation Cycle')
    ax3.set_ylabel('Average Memory Load')
    ax3.legend()
    ax3.grid(True, alpha=0.3)

    # Agent performance comparison
    agent_names = [agent.name.split()[-1] for agent in team.values()]
    agent_actions = [agent.total_actions for agent in team.values()]

    bars = ax4.bar(agent_names, agent_actions, color=['blue', 'green', 'red', 'purple'])
    ax4.set_title('Individual Agent Activity')
    ax4.set_xlabel('Agent')
    ax4.set_ylabel('Total Actions')

    # Add value labels on bars
    for bar in bars:
        height = bar.get_height()
        ax4.text(bar.get_x() + bar.get_width()/2., height,
                f'{int(height)}', ha='center', va='bottom')

    plt.tight_layout()
    plt.savefig('advanced_simulation_results.png', dpi=300, bbox_inches='tight')
    plt.show()

# Run analysis
performance_summary = analyze_team_performance()
visualize_simulation_results()

print(f"\n🎉 Advanced simulation analysis complete!")
print(f"📈 Key insights:")
print(f"   • Team achieved {performance_summary['achieved_goals']}/{performance_summary['total_goals']} goals")
print(f"   • {performance_summary['messages']} collaborative interactions")
print(f"   • Simulation ran for {performance_summary['cycles']} cognitive cycles")
print(f"   • Average {performance_summary['messages']/performance_summary['cycles']:.1f} messages per cycle")

Key Learning Outcomes

1. Multi-Agent Coordination

  • Communication protocols enable knowledge sharing
  • Role specialization improves team effectiveness
  • Emergent behaviors arise from agent interactions

2. Complex Goal Management

  • Goal hierarchies break down complex objectives
  • Dynamic prioritization adapts to changing conditions
  • Collaborative achievement leverages team strengths

3. Advanced Cognitive Modeling

  • Realistic constraints create believable behavior
  • Metacognitive monitoring provides strategic oversight
  • Learning adaptation improves performance over time

4. Research Applications

  • AGI development benefit from collaborative cognitive modeling
  • Safety research requires multi-perspective analysis
  • Cognitive science insights emerge from realistic simulation

Next Steps

Now you're ready to:

  1. Design custom scenarios for your research domain
  2. Implement domain-specific knowledge and reasoning rules
  3. Analyze emergent behaviors in multi-agent systems
  4. Extend the framework with new agent capabilities
  5. Publish research findings using Cognito Simulation Engine

Congratulations! You've mastered advanced cognitive simulation with multiple agents, complex goals, and realistic cognitive constraints. You're now equipped to tackle cutting-edge AGI research challenges! 🧠✨