API Overview¶
Welcome to the Cognito Simulation Engine API documentation. This section provides comprehensive technical reference for all classes, methods, and interfaces in the simulation engine.
Core Architecture¶
The Cognito Simulation Engine is built with a modular architecture consisting of several key components:
Primary Modules¶
- Engine - Core simulation engine and cognitive processing
- Memory - Memory systems (working, episodic, semantic, long-term)
- Reasoning - Inference engine and symbolic reasoning
- Agents - Agent architectures and behaviors
- Environment - Simulation environments and dynamics
Integration Components¶
- CLI - Command-line interface utilities
- Utils - Utility functions and helpers
- Types - Type definitions and data structures
Quick Start Example¶
from cognito_sim_engine import CognitiveEngine, CognitiveAgent, Environment
# Create simulation environment
env = Environment("research_lab", environment_type="collaborative")
# Create cognitive agent
agent = CognitiveAgent(
agent_id="researcher_001",
personality_traits={
"openness": 0.8,
"conscientiousness": 0.9,
"extraversion": 0.6
}
)
# Create simulation engine
engine = CognitiveEngine()
engine.add_environment(env)
env.add_agent(agent)
# Run simulation
results = engine.run_simulation(duration=3600)
Core Classes Reference¶
CognitiveEngine¶
The main simulation engine that orchestrates all cognitive processes.
class CognitiveEngine:
def __init__(self, config: Optional[Dict] = None)
def add_environment(self, environment: Environment) -> None
def run_simulation(self, duration: int, **kwargs) -> SimulationResults
def step(self) -> StepResults
def get_state(self) -> EngineState
Key Methods:
run_simulation()
- Execute simulation for specified durationstep()
- Execute single simulation stepadd_environment()
- Add environment to simulationget_metrics()
- Retrieve simulation metrics
CognitiveAgent¶
Base class for all cognitive agents with memory, reasoning, and goal management.
class CognitiveAgent:
def __init__(self, agent_id: str, **kwargs)
def perceive(self, environment: Environment) -> Perception
def reason(self, perception: Perception) -> ReasoningResult
def act(self, reasoning_result: ReasoningResult) -> Action
def learn(self, experience: Experience) -> None
Key Properties:
memory_manager
- Access to agent's memory systemsreasoning_engine
- Inference and reasoning capabilitiesgoal_manager
- Goal setting and achievement trackingpersonality_traits
- Personality configuration
Memory Systems¶
WorkingMemory¶
Short-term memory for active information processing.
class WorkingMemory:
def __init__(self, capacity: int = 7, decay_rate: float = 0.1)
def store(self, item: MemoryItem, activation: float = 1.0) -> None
def retrieve(self, query: str, limit: int = None) -> List[MemoryItem]
def update_activations(self) -> None
EpisodicMemory¶
Memory for personal experiences and events.
class EpisodicMemory:
def __init__(self, capacity: int = 10000)
def store_episode(self, episode: Episode) -> None
def retrieve_episodes(self, query: str, **kwargs) -> List[Episode]
def find_similar_episodes(self, target: Episode, threshold: float = 0.7) -> List[Episode]
SemanticMemory¶
Memory for general knowledge and concepts.
class SemanticMemory:
def __init__(self)
def store_concept(self, concept: Concept) -> None
def retrieve_concepts(self, query: str, **kwargs) -> List[Concept]
def get_related_concepts(self, concept_id: str, relation_type: str = None) -> List[Concept]
Reasoning Components¶
InferenceEngine¶
Core reasoning and inference capabilities.
class InferenceEngine:
def __init__(self, config: Optional[Dict] = None)
def infer(self, facts: List[Fact], rules: List[Rule], goal: Optional[Goal] = None) -> InferenceResult
def forward_chain(self, facts: List[Fact], rules: List[Rule]) -> List[Fact]
def backward_chain(self, goal: Goal, facts: List[Fact], rules: List[Rule]) -> bool
SymbolicReasoner¶
Symbolic logic and rule-based reasoning.
class SymbolicReasoner:
def __init__(self, depth_limit: int = 10, breadth_limit: int = 100)
def reason(self, premises: List[Premise], conclusion: Conclusion) -> ReasoningResult
def validate_reasoning(self, reasoning_chain: List[ReasoningStep]) -> bool
Environment System¶
Environment¶
Base environment class for all simulation environments.
class Environment:
def __init__(self, env_id: str, environment_type: str = "basic", **kwargs)
def add_agent(self, agent: CognitiveAgent) -> None
def remove_agent(self, agent_id: str) -> None
def step(self) -> EnvironmentState
def get_percepts_for_agent(self, agent_id: str) -> List[Percept]
Specialized Environments:
CollaborativeEnvironment
- Multi-agent collaborationLearningEnvironment
- Educational simulationsCompetitiveEnvironment
- Competition scenarios
Data Types and Structures¶
Core Data Types¶
# Basic simulation types
@dataclass
class Perception:
agent_id: str
timestamp: float
sensory_data: Dict[str, Any]
environmental_state: EnvironmentState
@dataclass
class Action:
agent_id: str
action_type: str
parameters: Dict[str, Any]
timestamp: float
@dataclass
class Experience:
agent_id: str
perception: Perception
action: Action
outcome: Any
reward: float
timestamp: float
# Memory types
@dataclass
class MemoryItem:
content: Any
activation: float
timestamp: float
memory_type: MemoryType
tags: List[str]
@dataclass
class Episode:
episode_id: str
agent_id: str
timestamp: float
events: List[Event]
context: Dict[str, Any]
emotional_state: EmotionalState
# Reasoning types
@dataclass
class Fact:
predicate: str
arguments: List[str]
confidence: float
source: str
@dataclass
class Rule:
rule_id: str
conditions: List[Fact]
conclusion: Fact
confidence: float
@dataclass
class Goal:
goal_id: str
description: str
goal_type: GoalType
priority: float
success_criteria: List[str]
deadline: Optional[datetime]
Enumerations¶
class AgentType(Enum):
COGNITIVE = "cognitive"
LEARNING = "learning"
REACTIVE = "reactive"
DELIBERATIVE = "deliberative"
class MemoryType(Enum):
WORKING = "working"
EPISODIC = "episodic"
SEMANTIC = "semantic"
LONG_TERM = "long_term"
class GoalType(Enum):
ACHIEVEMENT = "achievement"
MAINTENANCE = "maintenance"
AVOIDANCE = "avoidance"
class EnvironmentType(Enum):
BASIC = "basic"
COLLABORATIVE = "collaborative"
COMPETITIVE = "competitive"
LEARNING = "learning"
Configuration Objects¶
Engine Configuration¶
@dataclass
class EngineConfig:
# Simulation parameters
time_step: float = 1.0
max_steps: int = 1000
real_time_factor: float = 1.0
# Processing parameters
parallel_processing: bool = False
max_threads: int = 4
batch_size: int = 100
# Memory management
memory_cleanup_interval: int = 100
max_memory_usage: int = 1000000
# Logging and debugging
log_level: str = "INFO"
debug_mode: bool = False
profile_performance: bool = False
Agent Configuration¶
@dataclass
class AgentConfig:
# Agent parameters
agent_type: AgentType = AgentType.COGNITIVE
personality_traits: Dict[str, float] = None
# Memory configuration
working_memory_capacity: int = 7
episodic_memory_capacity: int = 10000
semantic_memory_enabled: bool = True
# Reasoning configuration
reasoning_depth: int = 5
confidence_threshold: float = 0.6
inference_timeout: float = 5.0
# Learning configuration
learning_rate: float = 0.01
exploration_rate: float = 0.1
adaptation_enabled: bool = True
Error Handling¶
Custom Exceptions¶
class CognitoSimError(Exception):
"""Base exception for Cognito Simulation Engine"""
pass
class AgentError(CognitoSimError):
"""Exceptions related to agent operations"""
pass
class MemoryError(CognitoSimError):
"""Exceptions related to memory operations"""
pass
class ReasoningError(CognitoSimError):
"""Exceptions related to reasoning operations"""
pass
class EnvironmentError(CognitoSimError):
"""Exceptions related to environment operations"""
pass
class SimulationError(CognitoSimError):
"""Exceptions related to simulation execution"""
pass
Error Handling Patterns¶
try:
# Agent operations
agent = CognitiveAgent("agent_001")
result = agent.reason(perception)
except AgentError as e:
logger.error(f"Agent error: {e}")
# Handle agent-specific errors
try:
# Memory operations
memory_item = agent.memory_manager.retrieve("query")
except MemoryError as e:
logger.error(f"Memory error: {e}")
# Handle memory-specific errors
try:
# Simulation operations
engine = CognitiveEngine()
results = engine.run_simulation(duration=3600)
except SimulationError as e:
logger.error(f"Simulation error: {e}")
# Handle simulation-specific errors
Performance Considerations¶
Memory Management¶
# Efficient memory usage patterns
agent_config = AgentConfig(
working_memory_capacity=7, # Realistic cognitive limits
episodic_memory_capacity=5000, # Reasonable for long simulations
memory_cleanup_enabled=True # Automatic cleanup
)
# Memory monitoring
memory_stats = agent.memory_manager.get_memory_statistics()
if memory_stats.usage_percentage > 0.8:
agent.memory_manager.cleanup_old_memories()
Reasoning Optimization¶
# Efficient reasoning configuration
reasoning_config = {
"max_depth": 10, # Prevent infinite recursion
"timeout": 5.0, # Reasonable time limits
"cache_enabled": True, # Cache reasoning results
"parallel_processing": False # For thread safety
}
inference_engine = InferenceEngine(reasoning_config)
Simulation Scaling¶
# Large-scale simulation patterns
engine_config = EngineConfig(
parallel_processing=True,
max_threads=4,
batch_size=50,
memory_cleanup_interval=100
)
# Monitor performance
engine = CognitiveEngine(engine_config)
engine.enable_performance_monitoring()
results = engine.run_simulation(duration=3600)
performance_metrics = engine.get_performance_metrics()
Integration Patterns¶
Custom Agent Types¶
class ResearchAgent(CognitiveAgent):
def __init__(self, agent_id: str, research_domain: str, **kwargs):
super().__init__(agent_id, **kwargs)
self.research_domain = research_domain
self.research_history = []
def conduct_research(self, research_question: str) -> ResearchResult:
# Custom research behavior
perception = self.perceive_research_context(research_question)
reasoning_result = self.reason_about_research(perception)
research_action = self.plan_research_action(reasoning_result)
return self.execute_research(research_action)
Custom Environments¶
class AcademicEnvironment(Environment):
def __init__(self, env_id: str, **kwargs):
super().__init__(env_id, environment_type="academic", **kwargs)
self.research_papers = []
self.collaboration_network = CollaborationNetwork()
def facilitate_research_collaboration(self, agents: List[CognitiveAgent]) -> None:
# Custom collaboration logic
for agent in agents:
collaborators = self.find_potential_collaborators(agent)
self.initiate_collaboration(agent, collaborators)
Event Handling¶
# Custom event handlers
def on_agent_learning(agent: CognitiveAgent, learning_event: LearningEvent):
logger.info(f"Agent {agent.agent_id} learned: {learning_event.content}")
def on_goal_achieved(agent: CognitiveAgent, goal: Goal):
logger.info(f"Agent {agent.agent_id} achieved goal: {goal.description}")
# Register event handlers
engine.register_event_handler("agent_learning", on_agent_learning)
engine.register_event_handler("goal_achieved", on_goal_achieved)
Testing and Validation¶
Unit Testing Patterns¶
import unittest
from cognito_sim_engine import CognitiveAgent, WorkingMemory
class TestWorkingMemory(unittest.TestCase):
def setUp(self):
self.memory = WorkingMemory(capacity=7)
def test_memory_storage(self):
item = MemoryItem("test_content", activation=1.0)
self.memory.store(item)
self.assertEqual(len(self.memory.items), 1)
def test_memory_retrieval(self):
item = MemoryItem("test_content", activation=1.0)
self.memory.store(item)
retrieved = self.memory.retrieve("test")
self.assertGreater(len(retrieved), 0)
Integration Testing¶
def test_agent_environment_interaction():
# Create test environment
env = Environment("test_env")
# Create test agent
agent = CognitiveAgent("test_agent")
env.add_agent(agent)
# Test interaction
perception = agent.perceive(env)
assert perception is not None
reasoning_result = agent.reason(perception)
assert reasoning_result.success
action = agent.act(reasoning_result)
assert action.action_type is not None
This API overview provides the foundation for understanding and using the Cognito Simulation Engine. For detailed documentation on specific components, explore the individual module references.
Next Steps:
- Engine API - Core simulation engine
- Agents API - Agent architectures and behaviors
- Memory API - Memory systems
- Examples - Complete usage examples