Skip to content

Agents API Reference

The Agents API provides comprehensive agent architectures for cognitive simulation, including cognitive agents, learning agents, and specialized agent types with sophisticated behaviors and capabilities.

CognitiveAgent

The base class for all cognitive agents with memory, reasoning, and goal management.

class CognitiveAgent:
    """
    Base cognitive agent with memory, reasoning, and goal management.

    Implements the core cognitive architecture with perception, reasoning,
    action selection, and learning capabilities.
    """

    def __init__(
        self,
        agent_id: str,
        agent_type: AgentType = AgentType.COGNITIVE,
        personality_traits: Optional[Dict[str, float]] = None,
        config: Optional[AgentConfig] = None
    ):
        """
        Initialize cognitive agent.

        Args:
            agent_id: Unique identifier for the agent
            agent_type: Type of agent architecture
            personality_traits: Personality trait values (0.0 to 1.0)
            config: Agent configuration object
        """

Core Cognitive Cycle

perceive

def perceive(self, environment: Environment) -> Perception:
    """
    Perceive the environment and process sensory information.

    Args:
        environment: Environment to perceive

    Returns:
        Perception: Processed perceptual information

    Raises:
        AgentError: If perception fails
    """

reason

def reason(self, perception: Perception, context: Optional[Dict] = None) -> ReasoningResult:
    """
    Process perception through reasoning systems.

    Args:
        perception: Current perceptual input
        context: Additional reasoning context

    Returns:
        ReasoningResult: Results of reasoning process

    Raises:
        ReasoningError: If reasoning fails
    """

act

def act(self, reasoning_result: ReasoningResult) -> Action:
    """
    Select and execute action based on reasoning.

    Args:
        reasoning_result: Output from reasoning process

    Returns:
        Action: Selected action to execute

    Raises:
        AgentError: If action selection fails
    """

learn

def learn(self, experience: Experience) -> LearningResult:
    """
    Learn from experience and update internal models.

    Args:
        experience: Experience to learn from

    Returns:
        LearningResult: Results of learning process

    Raises:
        LearningError: If learning fails
    """

Complete Example:

from cognito_sim_engine import CognitiveAgent, Environment, AgentConfig

# Configure agent
config = AgentConfig(
    working_memory_capacity=7,
    reasoning_depth=5,
    learning_rate=0.01,
    personality_traits={
        "openness": 0.8,
        "conscientiousness": 0.9,
        "extraversion": 0.6,
        "agreeableness": 0.7,
        "neuroticism": 0.3
    }
)

# Create cognitive agent
agent = CognitiveAgent(
    agent_id="researcher_001",
    agent_type=AgentType.COGNITIVE,
    config=config
)

# Set up environment
research_lab = Environment("ai_research_lab", environment_type="collaborative")
research_lab.add_agent(agent)

# Cognitive cycle execution
for step in range(100):
    # Perception phase
    perception = agent.perceive(research_lab)
    print(f"Step {step}: Perceived {len(perception.environmental_objects)} objects")

    # Reasoning phase
    reasoning_result = agent.reason(perception)
    print(f"Reasoning confidence: {reasoning_result.confidence:.2f}")

    # Action phase
    action = agent.act(reasoning_result)
    print(f"Selected action: {action.action_type}")

    # Execute action in environment
    action_result = research_lab.execute_action(agent.agent_id, action)

    # Learning phase
    experience = Experience(
        agent_id=agent.agent_id,
        perception=perception,
        action=action,
        outcome=action_result,
        reward=action_result.reward,
        timestamp=time.time()
    )

    learning_result = agent.learn(experience)
    if learning_result.knowledge_updated:
        print(f"Agent learned: {learning_result.learning_summary}")

Memory Integration

get_memory_manager

def get_memory_manager(self) -> MemoryManager:
    """
    Get the agent's memory manager.

    Returns:
        MemoryManager: Agent's memory system
    """

store_memory

def store_memory(
    self,
    content: Any,
    memory_type: MemoryType,
    importance: float = 0.5,
    tags: List[str] = None
) -> str:
    """
    Store information in agent's memory.

    Args:
        content: Content to store
        memory_type: Type of memory to store in
        importance: Importance weight (0.0 to 1.0)
        tags: Tags for categorization

    Returns:
        str: Memory item ID
    """

retrieve_memories

def retrieve_memories(
    self,
    query: str,
    memory_types: List[MemoryType] = None,
    limit: int = 10
) -> List[MemoryItem]:
    """
    Retrieve memories matching query.

    Args:
        query: Search query
        memory_types: Types of memory to search
        limit: Maximum number of results

    Returns:
        List[MemoryItem]: Retrieved memories
    """

Goal Management

add_goal

def add_goal(
    self,
    goal: Goal,
    priority: float = 0.5,
    deadline: Optional[datetime] = None
) -> None:
    """
    Add a goal to the agent's goal stack.

    Args:
        goal: Goal to add
        priority: Goal priority (0.0 to 1.0)
        deadline: Optional deadline for goal

    Raises:
        GoalError: If goal cannot be added
    """

get_active_goals

def get_active_goals(self) -> List[Goal]:
    """
    Get currently active goals.

    Returns:
        List[Goal]: Active goals ordered by priority
    """

update_goal_progress

def update_goal_progress(
    self,
    goal_id: str,
    progress: float,
    evidence: Optional[str] = None
) -> None:
    """
    Update progress toward a goal.

    Args:
        goal_id: ID of goal to update
        progress: Progress amount (0.0 to 1.0)
        evidence: Evidence for progress
    """

Goal Management Example:

from cognito_sim_engine import Goal, GoalType

# Create research goal
research_goal = Goal(
    goal_id="master_transformers",
    description="Understand transformer architecture deeply",
    goal_type=GoalType.ACHIEVEMENT,
    success_criteria=[
        "understand_attention_mechanism",
        "implement_basic_transformer",
        "explain_to_others"
    ],
    measurable_metrics={
        "understanding_level": 0.8,
        "implementation_success": 1.0,
        "explanation_clarity": 0.7
    }
)

# Add goal to agent
agent.add_goal(
    goal=research_goal,
    priority=0.9,
    deadline=datetime.now() + timedelta(days=30)
)

# Check active goals
active_goals = agent.get_active_goals()
print(f"Agent has {len(active_goals)} active goals")

# Update progress as agent learns
agent.update_goal_progress(
    goal_id="master_transformers",
    progress=0.2,
    evidence="Completed attention mechanism tutorial"
)

Personality and Traits

get_personality_traits

def get_personality_traits(self) -> Dict[str, float]:
    """
    Get agent's personality traits.

    Returns:
        Dict[str, float]: Personality trait values
    """

update_personality_trait

def update_personality_trait(self, trait: str, value: float) -> None:
    """
    Update a personality trait value.

    Args:
        trait: Name of trait to update
        value: New trait value (0.0 to 1.0)

    Raises:
        ValueError: If trait name invalid or value out of range
    """

get_behavioral_tendencies

def get_behavioral_tendencies(self) -> BehavioralProfile:
    """
    Get behavioral tendencies based on personality.

    Returns:
        BehavioralProfile: Behavioral tendency predictions
    """

Personality Example:

# Create agent with specific personality
personality = {
    "openness": 0.9,        # Very open to new experiences
    "conscientiousness": 0.8, # Highly organized and disciplined
    "extraversion": 0.4,    # Somewhat introverted
    "agreeableness": 0.7,   # Cooperative and trusting
    "neuroticism": 0.2      # Emotionally stable
}

agent = CognitiveAgent(
    agent_id="research_agent",
    personality_traits=personality
)

# Get behavioral predictions
behavioral_profile = agent.get_behavioral_tendencies()
print(f"Exploration tendency: {behavioral_profile.exploration_tendency:.2f}")
print(f"Collaboration preference: {behavioral_profile.collaboration_preference:.2f}")
print(f"Risk tolerance: {behavioral_profile.risk_tolerance:.2f}")

# Personality affects decision making
if agent.get_personality_traits()["openness"] > 0.7:
    # High openness leads to more experimental approaches
    agent.set_reasoning_strategy("creative_exploration")

LearningAgent

Specialized agent with advanced learning capabilities.

class LearningAgent(CognitiveAgent):
    """
    Agent specialized for learning and adaptation.

    Extends cognitive agent with enhanced learning algorithms,
    meta-learning capabilities, and adaptive behavior.
    """

    def __init__(
        self,
        agent_id: str,
        learning_algorithm: str = "adaptive",
        learning_rate: float = 0.01,
        exploration_rate: float = 0.1,
        meta_learning_enabled: bool = True,
        **kwargs
    ):
        """
        Initialize learning agent.

        Args:
            agent_id: Unique identifier
            learning_algorithm: Learning algorithm to use
            learning_rate: Rate of learning adaptation
            exploration_rate: Rate of exploration vs exploitation
            meta_learning_enabled: Enable meta-learning capabilities
        """

Advanced Learning Methods

adaptive_learn

def adaptive_learn(
    self,
    experiences: List[Experience],
    learning_context: Optional[Dict] = None
) -> AdaptiveLearningResult:
    """
    Perform adaptive learning from multiple experiences.

    Args:
        experiences: Experiences to learn from
        learning_context: Context for learning adaptation

    Returns:
        AdaptiveLearningResult: Results of adaptive learning
    """

meta_learn

def meta_learn(
    self,
    learning_episodes: List[LearningEpisode],
    meta_strategy: str = "gradient_based"
) -> MetaLearningResult:
    """
    Learn how to learn more effectively.

    Args:
        learning_episodes: Previous learning episodes
        meta_strategy: Meta-learning strategy

    Returns:
        MetaLearningResult: Meta-learning outcomes
    """

Learning Agent Example:

from cognito_sim_engine import LearningAgent, Experience

# Create learning agent
learning_agent = LearningAgent(
    agent_id="student_001",
    learning_algorithm="adaptive",
    learning_rate=0.05,
    exploration_rate=0.15,
    meta_learning_enabled=True
)

# Simulate learning from multiple experiences
experiences = []
for i in range(100):
    # Generate learning experience
    experience = generate_learning_experience(learning_agent, environment)
    experiences.append(experience)

    # Immediate learning
    learning_result = learning_agent.learn(experience)

    # Adaptive learning every 10 experiences
    if i % 10 == 0 and i > 0:
        adaptive_result = learning_agent.adaptive_learn(
            experiences=experiences[-10:],
            learning_context={"phase": "skill_building"}
        )
        print(f"Adaptive learning improved efficiency by {adaptive_result.efficiency_gain:.2f}")

# Meta-learning from learning history
learning_episodes = learning_agent.get_learning_history()
meta_result = learning_agent.meta_learn(learning_episodes)
print(f"Meta-learning updated {len(meta_result.updated_strategies)} strategies")

ReflectiveAgent

Agent with sophisticated self-reflection and metacognitive capabilities.

class ReflectiveAgent(CognitiveAgent):
    """
    Agent with self-reflection and metacognitive capabilities.

    Monitors its own cognitive processes, evaluates performance,
    and adapts strategies based on self-assessment.
    """

    def __init__(
        self,
        agent_id: str,
        reflection_frequency: int = 10,
        metacognitive_monitoring: bool = True,
        self_assessment_enabled: bool = True,
        **kwargs
    ):
        """
        Initialize reflective agent.

        Args:
            agent_id: Unique identifier
            reflection_frequency: Steps between reflection sessions
            metacognitive_monitoring: Enable metacognitive monitoring
            self_assessment_enabled: Enable self-performance assessment
        """

Reflection Methods

reflect_on_performance

def reflect_on_performance(
    self,
    performance_window: int = 50,
    reflection_depth: str = "deep"
) -> ReflectionResult:
    """
    Reflect on recent performance and identify improvements.

    Args:
        performance_window: Number of recent steps to analyze
        reflection_depth: Depth of reflection ("shallow", "medium", "deep")

    Returns:
        ReflectionResult: Insights and improvement recommendations
    """

self_assess

def self_assess(
    self,
    assessment_dimensions: List[str] = None,
    comparison_baseline: str = "past_performance"
) -> SelfAssessment:
    """
    Perform self-assessment of capabilities and performance.

    Args:
        assessment_dimensions: Dimensions to assess
        comparison_baseline: Baseline for comparison

    Returns:
        SelfAssessment: Self-assessment results
    """

metacognitive_monitor

def metacognitive_monitor(self) -> MetacognitiveState:
    """
    Monitor own cognitive processes and states.

    Returns:
        MetacognitiveState: Current metacognitive awareness
    """

Reflective Agent Example:

from cognito_sim_engine import ReflectiveAgent

# Create reflective agent
reflective_agent = ReflectiveAgent(
    agent_id="self_aware_researcher",
    reflection_frequency=25,
    metacognitive_monitoring=True,
    self_assessment_enabled=True
)

# Run agent with periodic reflection
for step in range(100):
    # Regular cognitive cycle
    perception = reflective_agent.perceive(environment)
    reasoning_result = reflective_agent.reason(perception)
    action = reflective_agent.act(reasoning_result)

    # Metacognitive monitoring
    metacog_state = reflective_agent.metacognitive_monitor()
    if metacog_state.confidence_low:
        print(f"Step {step}: Agent recognizes low confidence")

    # Periodic reflection
    if step % 25 == 0 and step > 0:
        reflection_result = reflective_agent.reflect_on_performance(
            performance_window=25,
            reflection_depth="deep"
        )

        print(f"Reflection insights: {len(reflection_result.insights)}")
        for insight in reflection_result.insights:
            print(f"  - {insight.description}")

        # Apply improvements from reflection
        for improvement in reflection_result.improvements:
            reflective_agent.apply_improvement(improvement)

# Self-assessment
assessment = reflective_agent.self_assess(
    assessment_dimensions=["reasoning_accuracy", "learning_speed", "goal_achievement"],
    comparison_baseline="past_performance"
)

print("Self-Assessment Results:")
for dimension, score in assessment.dimension_scores.items():
    print(f"  {dimension}: {score:.2f}")

CollaborativeAgent

Agent designed for multi-agent collaboration and social interaction.

class CollaborativeAgent(CognitiveAgent):
    """
    Agent specialized for collaboration and social interaction.

    Includes theory of mind, communication protocols, and
    collaborative problem-solving capabilities.
    """

    def __init__(
        self,
        agent_id: str,
        collaboration_style: str = "cooperative",
        communication_enabled: bool = True,
        theory_of_mind: bool = True,
        trust_modeling: bool = True,
        **kwargs
    ):
        """
        Initialize collaborative agent.

        Args:
            agent_id: Unique identifier
            collaboration_style: Style of collaboration
            communication_enabled: Enable inter-agent communication
            theory_of_mind: Enable theory of mind modeling
            trust_modeling: Enable trust relationship modeling
        """

Collaboration Methods

communicate

def communicate(
    self,
    target_agent: str,
    message: Message,
    communication_channel: str = "direct"
) -> CommunicationResult:
    """
    Send communication to another agent.

    Args:
        target_agent: ID of target agent
        message: Message to send
        communication_channel: Channel for communication

    Returns:
        CommunicationResult: Result of communication attempt
    """

collaborate_on_task

def collaborate_on_task(
    self,
    task: CollaborativeTask,
    partner_agents: List[str],
    coordination_strategy: str = "adaptive"
) -> CollaborationResult:
    """
    Collaborate with other agents on a task.

    Args:
        task: Task to collaborate on
        partner_agents: IDs of collaboration partners
        coordination_strategy: Strategy for coordination

    Returns:
        CollaborationResult: Results of collaborative effort
    """

model_other_agent

def model_other_agent(
    self,
    target_agent_id: str,
    observation_history: List[Observation]
) -> AgentModel:
    """
    Create mental model of another agent.

    Args:
        target_agent_id: ID of agent to model
        observation_history: Observations of the agent

    Returns:
        AgentModel: Mental model of the other agent
    """

Collaborative Agent Example:

from cognito_sim_engine import CollaborativeAgent, Message, CollaborativeTask

# Create collaborative agents
agent_a = CollaborativeAgent(
    agent_id="collaborator_a",
    collaboration_style="cooperative",
    theory_of_mind=True,
    trust_modeling=True
)

agent_b = CollaborativeAgent(
    agent_id="collaborator_b", 
    collaboration_style="competitive",
    theory_of_mind=True,
    trust_modeling=True
)

# Set up collaborative environment
collaborative_env = Environment("research_collaboration", environment_type="collaborative")
collaborative_env.add_agent(agent_a)
collaborative_env.add_agent(agent_b)

# Communication between agents
message = Message(
    sender="collaborator_a",
    content="I propose we divide the research task by expertise areas",
    message_type="proposal",
    urgency=0.6
)

comm_result = agent_a.communicate(
    target_agent="collaborator_b",
    message=message,
    communication_channel="direct"
)

print(f"Communication successful: {comm_result.successful}")

# Collaborative task execution
research_task = CollaborativeTask(
    task_id="joint_research_project",
    description="Develop new machine learning algorithm",
    required_skills=["theoretical_analysis", "implementation", "evaluation"],
    complexity=0.8,
    deadline=datetime.now() + timedelta(days=14)
)

collaboration_result = agent_a.collaborate_on_task(
    task=research_task,
    partner_agents=["collaborator_b"],
    coordination_strategy="skill_complementary"
)

print(f"Collaboration efficiency: {collaboration_result.efficiency:.2f}")
print(f"Task completion: {collaboration_result.completion_percentage:.1f}%")

# Theory of mind modeling
agent_model = agent_a.model_other_agent(
    target_agent_id="collaborator_b",
    observation_history=agent_a.get_observation_history("collaborator_b")
)

print(f"Predicted agent_b personality: {agent_model.predicted_personality}")
print(f"Predicted agent_b goals: {agent_model.predicted_goals}")

Agent Configuration

AgentConfig

@dataclass
class AgentConfig:
    # Basic agent settings
    agent_type: AgentType = AgentType.COGNITIVE
    personality_traits: Optional[Dict[str, float]] = None

    # Cognitive settings
    working_memory_capacity: int = 7
    reasoning_depth: int = 5
    confidence_threshold: float = 0.6

    # Learning settings
    learning_enabled: bool = True
    learning_rate: float = 0.01
    exploration_rate: float = 0.1
    adaptation_enabled: bool = True

    # Memory settings
    episodic_memory_capacity: int = 10000
    semantic_memory_enabled: bool = True
    memory_consolidation: bool = True

    # Social settings
    communication_enabled: bool = False
    collaboration_enabled: bool = False
    theory_of_mind: bool = False

    # Performance settings
    action_selection_strategy: str = "rational"
    decision_making_style: str = "deliberative"
    multitasking_enabled: bool = False

    # Advanced features
    metacognition_enabled: bool = False
    reflection_enabled: bool = False
    emotional_modeling: bool = False

Personality Modeling

# Big Five personality model
DEFAULT_PERSONALITY = {
    "openness": 0.5,           # Openness to experience
    "conscientiousness": 0.5,  # Conscientiousness and organization
    "extraversion": 0.5,       # Extraversion and social energy
    "agreeableness": 0.5,      # Agreeableness and cooperation
    "neuroticism": 0.5         # Neuroticism and emotional stability
}

# Personality affects behavior
def personality_influenced_decision(agent, options):
    """Make decisions influenced by personality traits."""

    personality = agent.get_personality_traits()

    # High openness: prefer novel options
    if personality["openness"] > 0.7:
        novel_options = [opt for opt in options if opt.novelty > 0.6]
        if novel_options:
            options = novel_options

    # High conscientiousness: prefer systematic approaches
    if personality["conscientiousness"] > 0.7:
        systematic_options = [opt for opt in options if opt.systematic]
        if systematic_options:
            options = systematic_options

    # High extraversion: prefer collaborative options
    if personality["extraversion"] > 0.7:
        social_options = [opt for opt in options if opt.involves_others]
        if social_options:
            options = social_options

    return agent.select_best_option(options)

Agent Specializations

ResearchAgent

class ResearchAgent(CognitiveAgent):
    """Agent specialized for research activities."""

    def __init__(self, agent_id: str, research_domain: str, **kwargs):
        super().__init__(agent_id, **kwargs)
        self.research_domain = research_domain
        self.research_methodology = ResearchMethodology()
        self.publication_tracker = PublicationTracker()

    def conduct_research(self, research_question: str) -> ResearchResult:
        """Conduct research on a specific question."""

        # Literature review
        literature = self.search_literature(research_question)

        # Hypothesis generation
        hypotheses = self.generate_hypotheses(research_question, literature)

        # Experimental design
        experiments = self.design_experiments(hypotheses)

        # Execute research
        results = self.execute_research(experiments)

        return ResearchResult(
            question=research_question,
            methodology=self.research_methodology,
            results=results,
            conclusions=self.draw_conclusions(results)
        )

TeachingAgent

class TeachingAgent(CognitiveAgent):
    """Agent specialized for teaching and education."""

    def __init__(self, agent_id: str, subject_expertise: List[str], **kwargs):
        super().__init__(agent_id, **kwargs)
        self.subject_expertise = subject_expertise
        self.pedagogical_knowledge = PedagogicalKnowledge()
        self.student_models = {}

    def teach_concept(
        self,
        student_agent: str,
        concept: str,
        teaching_strategy: str = "adaptive"
    ) -> TeachingResult:
        """Teach a concept to a student agent."""

        # Assess student's current knowledge
        student_model = self.assess_student_knowledge(student_agent, concept)

        # Select appropriate teaching strategy
        strategy = self.select_teaching_strategy(student_model, concept)

        # Create instructional content
        instruction = self.create_instruction(concept, strategy, student_model)

        # Deliver instruction
        delivery_result = self.deliver_instruction(student_agent, instruction)

        # Assess learning outcome
        learning_assessment = self.assess_learning_outcome(student_agent, concept)

        return TeachingResult(
            concept=concept,
            strategy=strategy,
            student_progress=learning_assessment,
            teaching_effectiveness=delivery_result.effectiveness
        )

Agent Lifecycle Management

Agent Creation and Configuration

def create_specialized_agent(agent_type: str, **kwargs) -> CognitiveAgent:
    """Factory function for creating specialized agents."""

    agent_configs = {
        "researcher": {
            "personality_traits": {"openness": 0.9, "conscientiousness": 0.8},
            "reasoning_depth": 8,
            "learning_rate": 0.02
        },
        "teacher": {
            "personality_traits": {"agreeableness": 0.8, "conscientiousness": 0.9},
            "communication_enabled": True,
            "theory_of_mind": True
        },
        "student": {
            "learning_rate": 0.05,
            "exploration_rate": 0.2,
            "metacognition_enabled": True
        }
    }

    config = agent_configs.get(agent_type, {})
    config.update(kwargs)

    if agent_type == "researcher":
        return ResearchAgent(**config)
    elif agent_type == "teacher":
        return TeachingAgent(**config)
    elif agent_type == "student":
        return LearningAgent(**config)
    else:
        return CognitiveAgent(**config)

# Create agents for classroom simulation
teacher = create_specialized_agent(
    "teacher",
    agent_id="professor_smith",
    subject_expertise=["machine_learning", "statistics"]
)

students = [
    create_specialized_agent(
        "student",
        agent_id=f"student_{i:03d}",
        learning_rate=random.uniform(0.01, 0.08)
    )
    for i in range(20)
]

Agent Monitoring and Analytics

class AgentMonitor:
    """Monitor and analyze agent performance."""

    def __init__(self):
        self.performance_history = {}
        self.behavioral_patterns = {}

    def track_agent_performance(self, agent: CognitiveAgent) -> PerformanceMetrics:
        """Track comprehensive agent performance metrics."""

        metrics = PerformanceMetrics(
            agent_id=agent.agent_id,
            cognitive_efficiency=self.measure_cognitive_efficiency(agent),
            learning_progress=self.measure_learning_progress(agent),
            goal_achievement_rate=self.measure_goal_achievement(agent),
            social_effectiveness=self.measure_social_effectiveness(agent),
            adaptation_capability=self.measure_adaptation(agent)
        )

        self.performance_history[agent.agent_id] = metrics
        return metrics

    def analyze_behavioral_patterns(self, agent: CognitiveAgent) -> BehavioralAnalysis:
        """Analyze agent's behavioral patterns over time."""

        action_history = agent.get_action_history()
        decision_patterns = self.extract_decision_patterns(action_history)
        learning_curves = self.compute_learning_curves(agent)

        return BehavioralAnalysis(
            agent_id=agent.agent_id,
            decision_patterns=decision_patterns,
            learning_curves=learning_curves,
            behavioral_consistency=self.measure_consistency(action_history),
            adaptation_events=self.identify_adaptation_events(agent)
        )

# Usage example
monitor = AgentMonitor()

# Track agents during simulation
for step in range(1000):
    for agent in agents:
        # Agent performs cognitive cycle
        agent.step()

        # Monitor performance every 100 steps
        if step % 100 == 0:
            performance = monitor.track_agent_performance(agent)
            print(f"Agent {agent.agent_id} efficiency: {performance.cognitive_efficiency:.2f}")

# Analyze behavioral patterns
for agent in agents:
    behavioral_analysis = monitor.analyze_behavioral_patterns(agent)
    print(f"Agent {agent.agent_id} consistency: {behavioral_analysis.behavioral_consistency:.2f}")

The Agents API provides sophisticated agent architectures that enable realistic cognitive behavior, learning, and social interaction. Use these components to create agents with human-like intelligence and behavior patterns.

Related APIs: