📊 Vector Stores¶
🔐 Licensed Component - Contact: bajpaikrishna715@gmail.com for licensing
Quantum Vector Store Architecture¶
graph TB
subgraph "Vector Store Types"
A[Classical Vector Store]
B[Quantum Vector Store]
C[Hybrid Vector Store]
D[Distributed Vector Store]
end
subgraph "Quantum Enhancements"
E[Quantum Embeddings]
F[Superposition Storage]
G[Entangled Indexing]
H[Quantum Search]
end
subgraph "Storage Backends"
I[In-Memory Storage]
J[Persistent Storage]
K[Cloud Storage]
L[Distributed Storage]
end
subgraph "Search Algorithms"
M[Classical KNN]
N[Quantum Amplitude Amplification]
O[Grover's Search]
P[Hybrid Search]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
I --> M
J --> N
K --> O
L --> P
🌟 Core Features¶
Quantum-Enhanced Similarity Search¶
graph LR
subgraph "Classical Search"
A[Linear Scan]
B[Tree Traversal]
C[Approximate Methods]
D[O(n) Complexity]
end
subgraph "Quantum Search"
E[Amplitude Amplification]
F[Quantum Interference]
G[Superposition Search]
H[O(sqrt(n)) Complexity]
end
subgraph "Hybrid Advantages"
I[Best of Both Worlds]
J[Adaptive Selection]
K[Context-Aware Search]
L[Optimal Performance]
end
A --> I
B --> J
C --> K
D --> L
E --> I
F --> J
G --> K
H --> L
Quantum Embeddings Integration¶
graph TB
subgraph "Classical Embeddings"
A[Static Representations]
B[Fixed Dimensions]
C[Linear Relationships]
D[Context-Independent]
end
subgraph "Quantum Embeddings"
E[Dynamic Representations]
F[Superposition Dimensions]
G[Non-Linear Relationships]
H[Context-Dependent]
end
subgraph "Enhanced Capabilities"
I[Richer Semantics]
J[Better Similarity]
K[Contextual Understanding]
L[Quantum Advantage]
end
A --> I
B --> J
C --> K
D --> L
E --> I
F --> J
G --> K
H --> L
🔧 Implementation¶
Basic Quantum Vector Store¶
from quantumlangchain.vectorstores import QuantumVectorStore
from quantumlangchain.embeddings import QuantumEmbeddings
# Initialize quantum embeddings
embeddings = QuantumEmbeddings(
classical_dim=768,
quantum_dim=8,
entanglement_strength=0.8
)
# Create quantum vector store
vectorstore = QuantumVectorStore(
embeddings=embeddings,
quantum_search=True,
superposition_storage=True,
dimension=768 + 256 # Classical + quantum dimensions
)
# Add documents with quantum enhancement
documents = [
"Quantum computing uses quantum mechanical phenomena",
"Machine learning optimizes model parameters",
"Natural language processing understands human language"
]
# Store with quantum encoding
await vectorstore.aadd_texts(
documents,
quantum_enhancement=True,
entanglement_grouping=True
)
# Quantum similarity search
results = await vectorstore.asimilarity_search(
"quantum machine learning",
k=5,
quantum_interference=True,
search_type="quantum_enhanced"
)
Advanced Hybrid Vector Store¶
from quantumlangchain.vectorstores import HybridVectorStore
from quantumlangchain.backends import QiskitBackend
class AdvancedVectorSystem:
def __init__(self):
# Quantum backend configuration
self.quantum_backend = QiskitBackend(
backend_name="qasm_simulator",
shots=1024,
optimization_level=2
)
# Quantum embeddings with error correction
self.embeddings = QuantumEmbeddings(
classical_dim=1024,
quantum_dim=12,
backend=self.quantum_backend,
error_correction=True,
decoherence_mitigation=True
)
# Hybrid vector store
self.vectorstore = HybridVectorStore(
embeddings=self.embeddings,
classical_backend="faiss",
quantum_backend=self.quantum_backend,
hybrid_search_strategy="adaptive"
)
# Search optimizer
self.search_optimizer = QuantumSearchOptimizer(
vectorstore=self.vectorstore
)
async def intelligent_storage(self, documents, metadata=None):
"""Intelligent document storage with quantum optimization."""
# Analyze document characteristics
doc_analysis = await self.analyze_documents(documents)
# Optimize storage strategy
storage_strategy = await self.optimize_storage_strategy(
doc_analysis
)
# Apply quantum encoding based on content type
if storage_strategy["use_quantum_encoding"]:
await self.vectorstore.quantum_add_documents(
documents,
metadata=metadata,
entanglement_pattern=storage_strategy["entanglement_pattern"],
compression_level=storage_strategy["compression_level"]
)
else:
await self.vectorstore.classical_add_documents(
documents,
metadata=metadata
)
async def adaptive_search(self, query, search_params=None):
"""Adaptive search with quantum-classical optimization."""
# Analyze query characteristics
query_analysis = await self.analyze_query(query)
# Select optimal search strategy
if query_analysis["complexity"] > 0.7:
# Use quantum search for complex queries
results = await self.vectorstore.quantum_search(
query,
k=search_params.get("k", 10),
quantum_interference=True,
amplitude_amplification=True
)
else:
# Use classical search for simple queries
results = await self.vectorstore.classical_search(
query,
k=search_params.get("k", 10)
)
# Post-process results with quantum enhancement
enhanced_results = await self.enhance_search_results(
results, query_analysis
)
return enhanced_results
Distributed Quantum Vector Store¶
from quantumlangchain.vectorstores import DistributedQuantumVectorStore
class DistributedVectorSystem:
def __init__(self, cluster_config):
# Distributed quantum vector store
self.vectorstore = DistributedQuantumVectorStore(
cluster_config=cluster_config,
quantum_sharding=True,
entanglement_across_nodes=True,
fault_tolerance=True
)
# Load balancer for quantum operations
self.load_balancer = QuantumLoadBalancer(
cluster_config
)
# Consistency manager
self.consistency_manager = QuantumConsistencyManager(
vectorstore=self.vectorstore
)
async def distributed_storage(self, documents, replication_factor=3):
"""Store documents across distributed quantum nodes."""
# Partition documents optimally
partitions = await self.optimal_partitioning(documents)
# Distribute with quantum entanglement
for partition in partitions:
target_nodes = await self.load_balancer.select_nodes(
partition, replication_factor
)
await self.vectorstore.distribute_partition(
partition,
target_nodes,
entanglement_links=True
)
async def quantum_distributed_search(self, query, global_search=True):
"""Distributed search with quantum coordination."""
if global_search:
# Search across all nodes with quantum coordination
search_tasks = []
for node in self.vectorstore.get_active_nodes():
task = self.vectorstore.quantum_search_on_node(
query, node
)
search_tasks.append(task)
# Quantum interference across results
node_results = await asyncio.gather(*search_tasks)
global_results = await self.quantum_result_fusion(
node_results
)
return global_results
else:
# Intelligent node selection
target_nodes = await self.select_relevant_nodes(query)
# Parallel search on selected nodes
results = await self.vectorstore.parallel_search(
query, target_nodes
)
return results
🎯 Vector Store Types¶
In-Memory Quantum Vector Store¶
graph TB
subgraph "Memory Organization"
A[Quantum State Memory]
B[Classical Vector Memory]
C[Index Memory]
D[Metadata Memory]
end
subgraph "Access Patterns"
E[Fast Random Access]
F[Sequential Scanning]
G[Parallel Processing]
H[Batch Operations]
end
subgraph "Optimization"
I[Memory Layout]
J[Cache Optimization]
K[SIMD Operations]
L[Quantum Parallelism]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
Persistent Quantum Vector Store¶
from quantumlangchain.vectorstores import PersistentQuantumVectorStore
class PersistentVectorSystem:
def __init__(self, storage_path):
self.vectorstore = PersistentQuantumVectorStore(
storage_path=storage_path,
quantum_state_persistence=True,
incremental_updates=True,
backup_strategy="quantum_redundancy"
)
# Persistence manager
self.persistence_manager = QuantumPersistenceManager(
storage_path
)
async def save_quantum_state(self):
"""Save quantum states to persistent storage."""
# Serialize quantum states
quantum_states = await self.vectorstore.get_quantum_states()
serialized_states = await self.serialize_quantum_states(
quantum_states
)
# Save with error correction
await self.persistence_manager.save_with_redundancy(
serialized_states
)
async def load_quantum_state(self):
"""Load quantum states from persistent storage."""
# Load with error correction
serialized_states = await self.persistence_manager.load_with_verification()
# Deserialize quantum states
quantum_states = await self.deserialize_quantum_states(
serialized_states
)
# Restore quantum vector store
await self.vectorstore.restore_quantum_states(quantum_states)
async def incremental_update(self, new_documents):
"""Incrementally update persistent store."""
# Add new documents
await self.vectorstore.aadd_texts(new_documents)
# Update indices
await self.vectorstore.update_indices()
# Save changes
await self.save_quantum_state()
Cloud Quantum Vector Store¶
graph LR
subgraph "Local Components"
A[Local Cache]
B[Query Interface]
C[Result Processing]
D[State Management]
end
subgraph "Cloud Infrastructure"
E[Quantum Compute Nodes]
F[Vector Storage]
G[Index Services]
H[Load Balancers]
end
subgraph "Communication Layer"
I[Quantum Channels]
J[Classical Channels]
K[Hybrid Protocols]
L[Security Layer]
end
A --> I
B --> J
C --> K
D --> L
E --> I
F --> J
G --> K
H --> L
📊 Performance Characteristics¶
Search Performance Comparison¶
graph TB
subgraph "Classical Performance"
A[Linear Search - O(n)]
B[Tree Search - O(log n)]
C[Hash Search - O(1)]
D[Approximate - O(log n)]
end
subgraph "Quantum Performance"
E[Grover Search - O(sqrt n)]
F[Amplitude Amplification]
G[Quantum Interference]
H[Superposition Parallelism]
end
subgraph "Performance Metrics"
I[Query Latency]
J[Throughput]
K[Accuracy]
L[Scalability]
end
A --> I
B --> J
C --> K
D --> L
E --> I
F --> J
G --> K
H --> L
Storage Efficiency¶
class VectorStoreAnalytics:
def __init__(self, vectorstore):
self.vectorstore = vectorstore
self.analytics = QuantumAnalytics()
async def analyze_storage_efficiency(self):
"""Analyze storage efficiency metrics."""
metrics = {
"storage_overhead": await self.calculate_storage_overhead(),
"compression_ratio": await self.calculate_compression_ratio(),
"quantum_advantage": await self.calculate_quantum_advantage(),
"search_speedup": await self.calculate_search_speedup()
}
return metrics
async def calculate_quantum_advantage(self):
"""Calculate quantum advantage for specific use case."""
# Benchmark classical vs quantum search
classical_time = await self.benchmark_classical_search()
quantum_time = await self.benchmark_quantum_search()
advantage = classical_time / quantum_time
return {
"speedup_factor": advantage,
"classical_time": classical_time,
"quantum_time": quantum_time
}
async def optimize_configuration(self):
"""Optimize vector store configuration."""
# Analyze access patterns
access_patterns = await self.analytics.analyze_access_patterns()
# Optimize based on patterns
if access_patterns["search_frequency"] > 0.8:
# Optimize for search performance
await self.vectorstore.optimize_for_search()
elif access_patterns["update_frequency"] > 0.8:
# Optimize for update performance
await self.vectorstore.optimize_for_updates()
else:
# Balanced optimization
await self.vectorstore.optimize_balanced()
🔒 License Integration¶
Vector Store Capacity Restrictions¶
graph LR
subgraph "License Tiers"
A[Basic - 10K Vectors]
B[Professional - 100K Vectors]
C[Enterprise - 1M+ Vectors]
D[Research - Unlimited]
end
subgraph "Quantum Features"
E[Basic Quantum Search]
F[Advanced Algorithms]
G[Distributed Storage]
H[Experimental Features]
end
subgraph "Performance Limits"
I[Standard Performance]
J[Enhanced Performance]
K[Enterprise Performance]
L[Research Performance]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
License Enforcement¶
from quantumlangchain.licensing import requires_license
class QuantumVectorStore(LicensedComponent):
@requires_license(tier="basic")
def __init__(self, **kwargs):
"""Initialize quantum vector store with license validation."""
super().__init__(
required_features=["vector_stores"],
required_tier="basic"
)
# Validate capacity limits
max_vectors = self._get_max_vector_capacity()
requested_capacity = kwargs.get("capacity", 10000)
if requested_capacity > max_vectors:
raise LicenseError(
f"Vector capacity exceeded. "
f"License allows {max_vectors} vectors, "
f"requested {requested_capacity}. "
f"Contact: bajpaikrishna715@gmail.com"
)
@requires_license(tier="professional")
def enable_advanced_search(self):
"""Enable advanced search algorithms (Professional+ only)."""
pass
@requires_license(tier="enterprise")
def enable_distributed_storage(self):
"""Enable distributed storage (Enterprise+ only)."""
pass
async def add_vectors(self, vectors, **kwargs):
"""Add vectors with license validation."""
current_count = await self.get_vector_count()
new_count = current_count + len(vectors)
max_vectors = self._get_max_vector_capacity()
if new_count > max_vectors:
raise LicenseError(
f"Adding {len(vectors)} vectors would exceed limit. "
f"Current: {current_count}, Limit: {max_vectors}. "
f"Contact: bajpaikrishna715@gmail.com"
)
await super().add_vectors(vectors, **kwargs)
🛠️ Configuration and Optimization¶
Vector Store Configuration¶
# Vector store configuration templates
VECTORSTORE_CONFIGS = {
"basic_config": {
"dimension": 768,
"quantum_dim": 4,
"similarity_metric": "cosine",
"index_type": "flat",
"quantum_search": False
},
"professional_config": {
"dimension": 1024,
"quantum_dim": 8,
"similarity_metric": "quantum_cosine",
"index_type": "quantum_hnsw",
"quantum_search": True,
"error_correction": True
},
"enterprise_config": {
"dimension": 2048,
"quantum_dim": 16,
"similarity_metric": "quantum_hybrid",
"index_type": "distributed_quantum",
"quantum_search": True,
"distributed": True,
"fault_tolerance": True
},
"research_config": {
"dimension": 4096,
"quantum_dim": 32,
"similarity_metric": "experimental",
"index_type": "adaptive_quantum",
"quantum_search": True,
"experimental_features": True,
"custom_algorithms": True
}
}
Performance Tuning¶
graph TB
subgraph "Tuning Parameters"
A[Vector Dimensions]
B[Quantum Dimensions]
C[Index Configuration]
D[Search Parameters]
end
subgraph "Optimization Strategies"
E[Dimensionality Reduction]
F[Quantum Compression]
G[Index Optimization]
H[Search Optimization]
end
subgraph "Performance Metrics"
I[Search Latency]
J[Index Build Time]
K[Memory Usage]
L[Accuracy]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
📚 API Reference¶
Core Vector Store Classes¶
class QuantumVectorStore:
def __init__(self, embeddings, **config):
"""Initialize quantum vector store."""
async def aadd_texts(self, texts: List[str], **kwargs) -> List[str]:
"""Add texts to vector store."""
async def asimilarity_search(self, query: str, k: int = 4, **kwargs) -> List[Document]:
"""Perform similarity search."""
async def asimilarity_search_with_score(self, query: str, k: int = 4) -> List[Tuple[Document, float]]:
"""Similarity search with scores."""
async def amax_marginal_relevance_search(self, query: str, k: int = 4, **kwargs) -> List[Document]:
"""Maximum marginal relevance search."""
class HybridVectorStore(QuantumVectorStore):
async def quantum_search(self, query: str, **kwargs) -> List[Document]:
"""Quantum-enhanced search."""
async def classical_search(self, query: str, **kwargs) -> List[Document]:
"""Classical search fallback."""
async def adaptive_search(self, query: str, **kwargs) -> List[Document]:
"""Adaptive quantum-classical search."""
Vector Store Utilities¶
class VectorStoreManager:
def __init__(self, vectorstore):
"""Initialize vector store manager."""
async def optimize_index(self) -> None:
"""Optimize vector store index."""
async def backup(self, location: str) -> bool:
"""Backup vector store."""
async def restore(self, location: str) -> bool:
"""Restore vector store from backup."""
def get_statistics(self) -> Dict[str, Any]:
"""Get vector store statistics."""
class QuantumSearchOptimizer:
def __init__(self, vectorstore):
"""Initialize search optimizer."""
async def optimize_search_parameters(self, query_samples: List[str]) -> Dict[str, Any]:
"""Optimize search parameters based on query samples."""
async def benchmark_search_methods(self) -> Dict[str, float]:
"""Benchmark different search methods."""
🔮 Future Enhancements¶
Planned Vector Store Features¶
graph TB
subgraph "Near Future"
A[Better Compression]
B[Faster Search]
C[Improved Accuracy]
D[Enhanced Security]
end
subgraph "Medium Term"
E[Fault-Tolerant Storage]
F[Self-Optimizing Indices]
G[Quantum Internet Integration]
H[Advanced Analytics]
end
subgraph "Long Term"
I[Topological Vector Stores]
J[Conscious Information Retrieval]
K[Universal Vector Protocols]
L[Quantum-Classical Fusion]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
🔐 License Requirements¶
- Basic Vector Store: Basic license tier (up to 10K vectors)
- Professional Vector Store: Professional license tier (up to 100K vectors)
- Enterprise Vector Store: Enterprise license tier (1M+ vectors)
- Research Vector Store: Research license tier (unlimited capacity)
Contact bajpaikrishna715@gmail.com for licensing.
Vector Stores provide the foundation for quantum-enhanced information retrieval and similarity search, enabling next-generation AI applications with unprecedented search capabilities.