🛠️ Tool Executor Module¶
🔐 Licensed Component - Contact: bajpaikrishna715@gmail.com for licensing
Tool Executor Architecture¶
graph TB
subgraph "Tool Management"
A[Tool Registry]
B[Tool Discovery]
C[Tool Validation]
D[Tool Execution]
end
subgraph "Quantum Enhancement"
E[Quantum Tool Selection]
F[Parallel Execution]
G[Entangled Coordination]
H[Superposition Planning]
end
subgraph "Execution Environment"
I[Secure Sandbox]
J[Resource Management]
K[Error Handling]
L[Result Processing]
end
subgraph "Integration Layer"
M[Chain Integration]
N[Agent Coordination]
O[Memory Interaction]
P[Vector Store Access]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
I --> M
J --> N
K --> O
L --> P
🌟 Core Features¶
Quantum Tool Selection¶
graph LR
subgraph "Classical Selection"
A[Sequential Evaluation]
B[Rule-Based Logic]
C[Single Tool Choice]
D[Limited Context]
end
subgraph "Quantum Selection"
E[Superposition Evaluation]
F[Quantum Logic Gates]
G[Multi-Tool Coherence]
H[Rich Context Understanding]
end
subgraph "Hybrid Benefits"
I[Optimal Tool Choice]
J[Context-Aware Selection]
K[Parallel Evaluation]
L[Enhanced Performance]
end
A --> I
B --> J
C --> K
D --> L
E --> I
F --> J
G --> K
H --> L
🔧 Implementation¶
Basic Tool Executor¶
from quantumlangchain.tools import QuantumToolExecutor
from quantumlangchain.tools.base import QuantumTool
# Initialize tool executor
executor = QuantumToolExecutor(
quantum_selection=True,
parallel_execution=True,
error_correction=True
)
# Register tools
calculator = QuantumTool(name="calculator", func=calculate)
searcher = QuantumTool(name="search", func=web_search)
analyzer = QuantumTool(name="analyzer", func=analyze_data)
executor.register_tools([calculator, searcher, analyzer])
# Execute with quantum enhancement
result = await executor.execute(
"Calculate the square root of 144 and search for its applications",
quantum_coordination=True
)
Advanced Multi-Agent Tool Execution¶
from quantumlangchain.tools import DistributedQuantumToolExecutor
class AdvancedToolSystem:
def __init__(self):
self.executor = DistributedQuantumToolExecutor(
agents=["coordinator", "executor", "validator"],
quantum_coordination=True,
fault_tolerance=True
)
# Tool categories
self.computational_tools = [
"quantum_calculator",
"symbolic_math",
"numerical_solver"
]
self.data_tools = [
"data_analyzer",
"pattern_recognizer",
"visualization_engine"
]
self.ai_tools = [
"language_model",
"image_generator",
"code_assistant"
]
async def complex_task_execution(self, task_description):
"""Execute complex tasks using quantum-coordinated tools."""
# Quantum task decomposition
subtasks = await self.executor.quantum_decompose_task(
task_description
)
# Parallel tool execution with entanglement
results = []
for subtask in subtasks:
optimal_tools = await self.executor.quantum_tool_selection(
subtask
)
result = await self.executor.entangled_execution(
subtask, optimal_tools
)
results.append(result)
# Quantum result synthesis
final_result = await self.executor.quantum_synthesis(results)
return final_result
Quantum Tool Coordination¶
class QuantumToolCoordinator:
def __init__(self, tools):
self.tools = tools
self.quantum_state = QuantumState(len(tools))
async def coordinate_tool_execution(self, task):
"""Coordinate multiple tools using quantum entanglement."""
# Create quantum superposition of tool combinations
tool_combinations = await self.create_tool_superposition(task)
# Execute in quantum parallel
quantum_results = await self.quantum_parallel_execution(
tool_combinations
)
# Measure optimal result
optimal_result = await self.quantum_measurement(
quantum_results
)
return optimal_result
async def adaptive_tool_learning(self):
"""Learn optimal tool usage patterns."""
# Analyze historical execution patterns
patterns = await self.analyze_execution_history()
# Update quantum model
await self.update_quantum_model(patterns)
# Optimize tool selection strategies
await self.optimize_selection_strategies()
🎯 Tool Categories¶
Computational Tools¶
graph TB
subgraph "Mathematical Tools"
A[Quantum Calculator]
B[Symbolic Math Engine]
C[Numerical Solver]
D[Statistical Analyzer]
end
subgraph "Scientific Tools"
E[Physics Simulator]
F[Chemistry Modeler]
G[Biology Analyzer]
H[Materials Designer]
end
subgraph "AI/ML Tools"
I[Model Trainer]
J[Data Preprocessor]
K[Feature Extractor]
L[Prediction Engine]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
Integration Tools¶
# Tool integration examples
TOOL_REGISTRY = {
"computational": {
"quantum_calculator": {
"description": "Quantum-enhanced mathematical calculations",
"input_types": ["numbers", "expressions"],
"output_types": ["results", "visualizations"],
"quantum_advantage": True
},
"symbolic_solver": {
"description": "Symbolic mathematics and equation solving",
"input_types": ["equations", "expressions"],
"output_types": ["solutions", "proofs"],
"quantum_advantage": False
}
},
"data_analysis": {
"pattern_recognizer": {
"description": "Quantum pattern recognition in data",
"input_types": ["datasets", "images", "text"],
"output_types": ["patterns", "insights"],
"quantum_advantage": True
},
"data_visualizer": {
"description": "Advanced data visualization",
"input_types": ["data", "specifications"],
"output_types": ["charts", "graphs", "interactive"],
"quantum_advantage": False
}
},
"ai_assistance": {
"code_generator": {
"description": "AI-powered code generation",
"input_types": ["requirements", "specifications"],
"output_types": ["code", "documentation"],
"quantum_advantage": True
}
}
}
📊 Performance Optimization¶
Execution Performance¶
graph LR
subgraph "Classical Execution"
A[Sequential Processing]
B[Single Tool Focus]
C[Limited Coordination]
D[Resource Conflicts]
end
subgraph "Quantum Execution"
E[Parallel Processing]
F[Multi-Tool Coherence]
G[Quantum Coordination]
H[Resource Optimization]
end
subgraph "Performance Gains"
I[Speed Improvement]
J[Quality Enhancement]
K[Resource Efficiency]
L[Scalability]
end
A --> I
B --> J
C --> K
D --> L
E --> I
F --> J
G --> K
H --> L
Tool Performance Analytics¶
class ToolPerformanceAnalyzer:
def __init__(self, executor):
self.executor = executor
self.metrics_collector = MetricsCollector()
async def analyze_tool_performance(self):
"""Analyze performance of individual tools and combinations."""
# Collect execution metrics
metrics = await self.metrics_collector.get_execution_metrics()
# Analyze quantum vs classical performance
quantum_performance = await self.analyze_quantum_performance(
metrics
)
# Identify optimization opportunities
optimizations = await self.identify_optimizations(metrics)
return {
"quantum_advantage": quantum_performance,
"optimization_suggestions": optimizations,
"performance_trends": await self.analyze_trends(metrics)
}
async def optimize_tool_selection(self):
"""Optimize tool selection based on performance data."""
# Machine learning on tool performance
model = await self.train_selection_model()
# Update quantum selection algorithms
await self.executor.update_selection_algorithm(model)
# Validate improvements
improvements = await self.validate_optimizations()
return improvements
🔒 License Integration¶
Tool Access Restrictions¶
graph LR
subgraph "License Tiers"
A[Basic - 5 Tools]
B[Professional - 20 Tools]
C[Enterprise - 100+ Tools]
D[Research - Unlimited]
end
subgraph "Execution Features"
E[Basic Execution]
F[Quantum Selection]
G[Parallel Execution]
H[Custom Tools]
end
A --> E
B --> F
C --> G
D --> H
License Enforcement¶
from quantumlangchain.licensing import requires_license
class QuantumToolExecutor(LicensedComponent):
@requires_license(tier="basic")
def __init__(self, **kwargs):
"""Initialize with license validation."""
super().__init__(
required_features=["tool_execution"],
required_tier="basic"
)
# Validate tool limits
max_tools = self._get_max_tools()
if len(kwargs.get("tools", [])) > max_tools:
raise LicenseError(
f"Tool limit exceeded. License allows {max_tools} tools. "
f"Contact: bajpaikrishna715@gmail.com"
)
@requires_license(tier="professional")
def enable_quantum_selection(self):
"""Enable quantum tool selection (Professional+ only)."""
pass
@requires_license(tier="enterprise")
def enable_parallel_execution(self):
"""Enable parallel tool execution (Enterprise+ only)."""
pass
📚 API Reference¶
Core Tool Executor Classes¶
class QuantumToolExecutor:
def __init__(self, tools=None, quantum_selection=True, **config):
"""Initialize quantum tool executor."""
async def execute(self, task: str, tools: List[str] = None, **kwargs) -> Any:
"""Execute task using selected tools."""
def register_tool(self, tool: QuantumTool) -> None:
"""Register a new tool."""
def register_tools(self, tools: List[QuantumTool]) -> None:
"""Register multiple tools."""
async def quantum_tool_selection(self, task: str) -> List[str]:
"""Select optimal tools using quantum algorithms."""
class QuantumTool:
def __init__(self, name: str, func: Callable, description: str = "", **metadata):
"""Initialize quantum tool."""
async def arun(self, *args, **kwargs) -> Any:
"""Run tool asynchronously."""
def run(self, *args, **kwargs) -> Any:
"""Run tool synchronously."""
🔮 Future Enhancements¶
Planned Tool Features¶
graph TB
subgraph "Near Future"
A[More Tool Types]
B[Better Selection]
C[Enhanced Performance]
D[Improved Security]
end
subgraph "Medium Term"
E[Self-Modifying Tools]
F[Quantum Tool Networks]
G[Adaptive Learning]
H[Auto-Tool Generation]
end
subgraph "Long Term"
I[Conscious Tools]
J[Universal Tool Interface]
K[Quantum Tool Ecosystem]
L[AI Tool Evolution]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
🔐 License Requirements¶
- Basic Tools: Basic license tier (up to 5 tools)
- Professional Tools: Professional license tier (up to 20 tools)
- Enterprise Tools: Enterprise license tier (100+ tools)
- Research Tools: Research license tier (unlimited tools)
Contact bajpaikrishna715@gmail.com for licensing.
Tool Executor provides quantum-enhanced tool management and execution capabilities for advanced AI automation and problem-solving.