🔧 Response Processor Module¶
🔐 Licensed Component - Contact: bajpaikrishna715@gmail.com for licensing
Response Processing Architecture¶
graph TB
subgraph "Response Generation"
A[Raw Response Generation]
B[Content Structuring]
C[Quality Enhancement]
D[Format Optimization]
end
subgraph "Processing Layers"
E[Syntax Processing]
F[Semantic Processing]
G[Pragmatic Processing]
H[Style Processing]
end
subgraph "Quantum Enhancement"
I[Superposition Responses]
J[Entangled Reasoning]
K[Coherent Output]
L[Quantum Optimization]
end
subgraph "Output Control"
M[Format Control]
N[Quality Assurance]
O[Response Validation]
P[Delivery Optimization]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
I --> M
J --> N
K --> O
L --> P
🌟 Core Features¶
Quantum Response Processing¶
graph LR
subgraph "Classical Response"
A[Linear Processing]
B[Single Path Generation]
C[Limited Optimization]
D[Basic Quality Control]
end
subgraph "Quantum Response"
E[Parallel Processing]
F[Multi-Path Generation]
G[Advanced Optimization]
H[Quantum Quality Control]
end
subgraph "Enhanced Capabilities"
I[Superior Quality]
J[Rich Content]
K[Optimized Format]
L[Intelligent Adaptation]
end
A --> I
B --> J
C --> K
D --> L
E --> I
F --> J
G --> K
H --> L
🔧 Implementation¶
Basic Response Processor¶
from quantumlangchain.response import QuantumResponseProcessor
# Initialize response processor
response_processor = QuantumResponseProcessor(
max_response_length=2048,
quality_threshold=0.8,
quantum_optimization=True,
multi_format_support=True
)
# Process a raw response
raw_response = "This is a basic response that needs processing."
processed_response = await response_processor.process_response(
raw_response,
target_format="markdown",
quality_level="high",
style="professional"
)
print(processed_response.content)
print(f"Quality Score: {processed_response.quality_score}")
print(f"Processing Time: {processed_response.processing_time}ms")
Advanced Multi-Stage Response Processor¶
from quantumlangchain.response import MultiStageResponseProcessor
class AdvancedResponseSystem:
def __init__(self):
self.response_processor = MultiStageResponseProcessor(
stages=[
"content_analysis",
"structure_optimization",
"quality_enhancement",
"format_adaptation",
"style_refinement",
"final_validation"
],
quantum_processing=True
)
# Specialized processors
self.content_analyzer = ContentAnalyzer()
self.structure_optimizer = StructureOptimizer()
self.quality_enhancer = QualityEnhancer()
self.format_adapter = FormatAdapter()
self.style_refiner = StyleRefiner()
self.validator = ResponseValidator()
async def process_advanced_response(self, raw_response, requirements):
"""Process response with advanced multi-stage processing."""
# Stage 1: Content Analysis
content_analysis = await self.content_analyzer.analyze(
raw_response,
requirements.get("analysis_depth", "standard")
)
# Stage 2: Structure Optimization
optimized_structure = await self.structure_optimizer.optimize(
raw_response,
content_analysis,
requirements.get("structure_type", "auto")
)
# Stage 3: Quality Enhancement
enhanced_content = await self.quality_enhancer.enhance(
optimized_structure,
target_quality=requirements.get("quality_level", 0.8)
)
# Stage 4: Format Adaptation
formatted_content = await self.format_adapter.adapt(
enhanced_content,
target_format=requirements.get("format", "text"),
format_options=requirements.get("format_options", {})
)
# Stage 5: Style Refinement
refined_content = await self.style_refiner.refine(
formatted_content,
style=requirements.get("style", "neutral"),
tone=requirements.get("tone", "professional")
)
# Stage 6: Final Validation
final_response = await self.validator.validate_and_finalize(
refined_content,
requirements
)
return final_response
async def quantum_response_generation(self, query, context, options):
"""Generate response using quantum processing."""
# Create superposition of possible responses
response_superposition = await self.create_response_superposition(
query, context, options
)
# Apply quantum optimization
optimized_responses = await self.quantum_optimize_responses(
response_superposition
)
# Collapse to best response through measurement
best_response = await self.quantum_measurement_collapse(
optimized_responses,
measurement_criteria=options.get("criteria", "quality")
)
return best_response
Adaptive Response Processing¶
class AdaptiveResponseProcessor:
def __init__(self):
self.adaptation_engine = ResponseAdaptationEngine()
self.user_profiler = UserProfiler()
self.context_analyzer = ContextAnalyzer()
self.style_predictor = StylePredictor()
async def adaptive_response_processing(self, response, user_profile, context):
"""Process response adaptively based on user and context."""
# Analyze user preferences
user_preferences = await self.user_profiler.analyze_preferences(
user_profile
)
# Analyze contextual requirements
contextual_needs = await self.context_analyzer.analyze_context(
context
)
# Predict optimal style
optimal_style = await self.style_predictor.predict_style(
user_preferences, contextual_needs
)
# Adapt response processing
adapted_response = await self.adaptation_engine.adapt_response(
response,
user_preferences=user_preferences,
contextual_needs=contextual_needs,
target_style=optimal_style
)
return adapted_response
async def real_time_adaptation(self, response_stream, feedback_stream):
"""Adapt response processing in real-time based on feedback."""
processed_responses = []
async for response_chunk in response_stream:
# Check for real-time feedback
recent_feedback = await feedback_stream.get_recent_feedback()
# Adapt processing based on feedback
if recent_feedback:
adaptation_adjustments = await self.calculate_adaptation_adjustments(
recent_feedback
)
await self.adaptation_engine.apply_real_time_adjustments(
adaptation_adjustments
)
# Process chunk with current adaptations
processed_chunk = await self.adaptation_engine.process_chunk(
response_chunk
)
processed_responses.append(processed_chunk)
return processed_responses
🎯 Response Types¶
Response Categories¶
graph TB
subgraph "Content Types"
A[Informational]
B[Instructional]
C[Conversational]
D[Creative]
end
subgraph "Format Types"
E[Text]
F[Markdown]
G[HTML]
H[JSON]
end
subgraph "Style Types"
I[Professional]
J[Casual]
K[Technical]
L[Academic]
end
subgraph "Delivery Types"
M[Immediate]
N[Streaming]
O[Batched]
P[Progressive]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
I --> M
J --> N
K --> O
L --> P
Response Processing Pipeline¶
class ResponseProcessingPipeline:
def __init__(self):
self.stages = {
"preprocessing": PreprocessingStage(),
"content_enhancement": ContentEnhancementStage(),
"structure_optimization": StructureOptimizationStage(),
"format_conversion": FormatConversionStage(),
"quality_assurance": QualityAssuranceStage(),
"postprocessing": PostprocessingStage()
}
async def process_response(self, raw_response, processing_config):
"""Process response through configurable pipeline."""
current_response = raw_response
processing_metadata = {}
# Select active stages based on config
active_stages = self.select_active_stages(processing_config)
for stage_name in active_stages:
stage = self.stages[stage_name]
# Configure stage for current processing
await stage.configure(processing_config)
# Process response through stage
stage_result = await stage.process(
current_response,
processing_metadata
)
current_response = stage_result.response
processing_metadata.update(stage_result.metadata)
# Quality check after each stage
if not await stage.validate_output(current_response):
# Handle processing error
fallback_response = await stage.get_fallback_response(
raw_response
)
current_response = fallback_response
return ProcessedResponse(
content=current_response,
metadata=processing_metadata,
quality_score=await self.calculate_quality_score(current_response)
)
async def batch_process_responses(self, responses, shared_config):
"""Process multiple responses efficiently."""
# Optimize pipeline for batch processing
await self.optimize_for_batch_processing()
# Process responses in parallel where possible
tasks = []
for response in responses:
task = self.process_response(response, shared_config)
tasks.append(task)
processed_responses = await asyncio.gather(*tasks)
return processed_responses
📊 Quality Metrics¶
Response Quality Assessment¶
graph LR
subgraph "Content Quality"
A[Accuracy]
B[Completeness]
C[Relevance]
D[Clarity]
end
subgraph "Technical Quality"
E[Format Compliance]
F[Structure Quality]
G[Processing Efficiency]
H[Error Rate]
end
subgraph "User Experience"
I[Readability]
J[Engagement]
K[Satisfaction]
L[Usability]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
Quality Enhancement System¶
class QualityEnhancementSystem:
def __init__(self):
self.quality_analyzers = {
"content": ContentQualityAnalyzer(),
"structure": StructureQualityAnalyzer(),
"language": LanguageQualityAnalyzer(),
"format": FormatQualityAnalyzer(),
"user_experience": UXQualityAnalyzer()
}
self.enhancement_engines = {
"content": ContentEnhancementEngine(),
"structure": StructureEnhancementEngine(),
"language": LanguageEnhancementEngine(),
"format": FormatEnhancementEngine(),
"user_experience": UXEnhancementEngine()
}
async def enhance_response_quality(self, response, target_quality=0.9):
"""Enhance response quality to meet target threshold."""
current_response = response
enhancement_iterations = 0
max_iterations = 5
while enhancement_iterations < max_iterations:
# Analyze current quality
quality_scores = await self.analyze_quality(current_response)
# Calculate overall quality score
overall_quality = sum(quality_scores.values()) / len(quality_scores)
if overall_quality >= target_quality:
break
# Identify areas needing improvement
improvement_areas = [
area for area, score in quality_scores.items()
if score < target_quality
]
# Apply targeted enhancements
for area in improvement_areas:
enhancer = self.enhancement_engines[area]
current_response = await enhancer.enhance(
current_response,
target_score=target_quality
)
enhancement_iterations += 1
return current_response
async def continuous_quality_improvement(self, feedback_data):
"""Continuously improve quality based on user feedback."""
# Analyze feedback patterns
feedback_patterns = await self.analyze_feedback_patterns(feedback_data)
# Identify systematic quality issues
quality_issues = await self.identify_quality_issues(feedback_patterns)
# Update enhancement algorithms
for issue in quality_issues:
affected_enhancer = self.enhancement_engines[issue.area]
await affected_enhancer.update_algorithms(issue.improvement_data)
# Retrain quality analyzers
for analyzer in self.quality_analyzers.values():
await analyzer.retrain_with_feedback(feedback_data)
🔒 License Integration¶
Response Processing Restrictions¶
graph LR
subgraph "License Tiers"
A[Basic - Simple Processing]
B[Professional - Advanced Processing]
C[Enterprise - Full Processing]
D[Research - Experimental Processing]
end
subgraph "Features"
E[Basic Enhancement]
F[Quantum Processing]
G[Real-time Adaptation]
H[Research Features]
end
A --> E
B --> F
C --> G
D --> H
License Enforcement¶
from quantumlangchain.licensing import requires_license
class QuantumResponseProcessor(LicensedComponent):
@requires_license(tier="basic")
def __init__(self, **kwargs):
"""Initialize with license validation."""
super().__init__(
required_features=["response_processing"],
required_tier="basic"
)
# Validate processing capabilities
max_length = self._get_max_response_length()
requested_length = kwargs.get("max_response_length", 1000)
if requested_length > max_length:
raise LicenseError(
f"Response length limit exceeded. "
f"License allows {max_length} tokens, "
f"requested {requested_length}. "
f"Contact: bajpaikrishna715@gmail.com"
)
@requires_license(tier="professional")
def enable_quantum_processing(self):
"""Enable quantum response processing (Professional+ only)."""
pass
@requires_license(tier="enterprise")
def enable_real_time_adaptation(self):
"""Enable real-time adaptation (Enterprise+ only)."""
pass
@requires_license(tier="research")
def enable_experimental_features(self):
"""Enable experimental processing features (Research only)."""
pass
📚 API Reference¶
Core Response Classes¶
class QuantumResponseProcessor:
def __init__(self, max_response_length=1000, quality_threshold=0.7, **config):
"""Initialize quantum response processor."""
async def process_response(self, raw_response: str, target_format: str = "text", **options) -> ProcessedResponse:
"""Process a raw response."""
async def batch_process(self, responses: List[str], shared_config: Dict[str, Any]) -> List[ProcessedResponse]:
"""Process multiple responses in batch."""
async def stream_process(self, response_stream: AsyncIterator[str], **options) -> AsyncIterator[ProcessedResponse]:
"""Process streaming response."""
def get_processing_stats(self) -> Dict[str, Any]:
"""Get response processing statistics."""
class ProcessedResponse:
def __init__(self, content: str, quality_score: float, processing_time: float, **metadata):
"""Initialize processed response."""
def to_dict(self) -> Dict[str, Any]:
"""Convert response to dictionary."""
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> 'ProcessedResponse':
"""Create response from dictionary."""
🔮 Future Enhancements¶
Planned Response Features¶
graph TB
subgraph "Near Future"
A[Better Quality Control]
B[Faster Processing]
C[Enhanced Formats]
D[Improved Adaptation]
end
subgraph "Medium Term"
E[Self-Optimizing Processing]
F[Predictive Enhancement]
G[Quantum Response Networks]
H[Adaptive Learning]
end
subgraph "Long Term"
I[Conscious Response Generation]
J[Universal Format Support]
K[Quantum Response Evolution]
L[AGI-Level Processing]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
🔐 License Requirements¶
- Basic Processing: Basic license tier (simple response processing)
- Professional Processing: Professional license tier (quantum enhancement)
- Enterprise Processing: Enterprise license tier (real-time adaptation)
- Research Processing: Research license tier (experimental features)
Contact bajpaikrishna715@gmail.com for licensing.
Response Processor provides quantum-enhanced response processing and optimization capabilities for superior AI output quality.