π Quantum Retriever ModuleΒΆ
π Licensed Component - Contact: bajpaikrishna715@gmail.com for licensing
Quantum Retriever ArchitectureΒΆ
graph TB
subgraph "Retrieval Pipeline"
A[Query Processing]
B[Quantum Encoding]
C[Search Execution]
D[Result Processing]
end
subgraph "Quantum Search Algorithms"
E[Grover's Algorithm]
F[Amplitude Amplification]
G[Quantum Walk Search]
H[Hybrid Search]
end
subgraph "Vector Store Integration"
I[Classical Vector Stores]
J[Quantum Vector Stores]
K[Hybrid Stores]
L[Distributed Stores]
end
subgraph "Performance Optimization"
M[Query Optimization]
N[Cache Management]
O[Parallel Processing]
P[Result Ranking]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
I --> M
J --> N
K --> O
L --> P
π Core FeaturesΒΆ
Quantum-Enhanced SearchΒΆ
graph LR
subgraph "Classical Search"
A[Linear Search]
B[Binary Search]
C[Hash Lookup]
D[O(n) or O(log n)]
end
subgraph "Quantum Search"
E[Grover Search]
F[Amplitude Amplification]
G[Quantum Interference]
H[O(sqrt(n))]
end
subgraph "Hybrid Benefits"
I[Best Performance]
J[Adaptive Selection]
K[Error Resilience]
L[Scalable Solutions]
end
A --> I
B --> J
C --> K
D --> L
E --> I
F --> J
G --> K
H --> L
π§ ImplementationΒΆ
Basic Quantum RetrieverΒΆ
from quantumlangchain.retrievers import QuantumRetriever
from quantumlangchain.vectorstores import QuantumVectorStore
# Initialize quantum retriever
retriever = QuantumRetriever(
vectorstore=QuantumVectorStore(),
search_algorithm="grover",
quantum_dim=8,
k_results=10
)
# Quantum-enhanced retrieval
docs = await retriever.aget_relevant_documents(
"quantum computing applications",
search_kwargs={"quantum_interference": True}
)
Advanced Multi-Modal RetrieverΒΆ
from quantumlangchain.retrievers import MultiModalQuantumRetriever
class AdvancedRetriever:
def __init__(self):
self.retriever = MultiModalQuantumRetriever(
text_vectorstore=text_store,
image_vectorstore=image_store,
audio_vectorstore=audio_store,
cross_modal_entanglement=True
)
async def quantum_multimodal_search(self, query):
"""Search across multiple modalities with quantum enhancement."""
results = await self.retriever.quantum_search(
query,
modalities=["text", "image", "audio"],
entanglement_strength=0.9
)
return results
π― Search AlgorithmsΒΆ
Grover's Search ImplementationΒΆ
graph TB
subgraph "Grover's Algorithm"
A[Initialize Superposition]
B[Oracle Function]
C[Diffusion Operator]
D[Iterate sqrt(N) times]
end
subgraph "Quantum Advantage"
E[Quadratic Speedup]
F[Parallel Search]
G[Amplitude Amplification]
H[Optimal Performance]
end
A --> E
B --> F
C --> G
D --> H
Custom Search AlgorithmsΒΆ
class CustomQuantumSearch:
def __init__(self, vectorstore):
self.vectorstore = vectorstore
self.quantum_backend = get_quantum_backend()
async def adaptive_quantum_search(self, query, **kwargs):
"""Adaptive quantum search that selects optimal algorithm."""
# Analyze query characteristics
query_complexity = self.analyze_query_complexity(query)
if query_complexity > 0.8:
# Use amplitude amplification for complex queries
return await self.amplitude_amplification_search(query)
elif query_complexity > 0.5:
# Use Grover's search for medium complexity
return await self.grover_search(query)
else:
# Use classical search for simple queries
return await self.classical_search(query)
π Performance MetricsΒΆ
Search Performance ComparisonΒΆ
graph LR
subgraph "Classical Performance"
A[Linear - O(n)]
B[Binary - O(log n)]
C[Hash - O(1) avg]
D[Limited Parallelism]
end
subgraph "Quantum Performance"
E[Grover - O(sqrt n)]
F[Quantum Walk - O(sqrt n)]
G[Amplitude Amp - O(sqrt n)]
H[Massive Parallelism]
end
subgraph "Hybrid Optimization"
I[Adaptive Algorithm]
J[Best of Both]
K[Context Aware]
L[Maximum Performance]
end
A --> I
B --> J
C --> K
D --> L
E --> I
F --> J
G --> K
H --> L
π License IntegrationΒΆ
Retriever RestrictionsΒΆ
graph LR
subgraph "License Tiers"
A[Basic - Classical Only]
B[Professional - Grover Search]
C[Enterprise - All Algorithms]
D[Research - Custom Algorithms]
end
subgraph "Performance Limits"
E[1K Documents]
F[10K Documents]
G[100K+ Documents]
H[Unlimited]
end
A --> E
B --> F
C --> G
D --> H
License EnforcementΒΆ
from quantumlangchain.licensing import requires_license
class QuantumRetriever(LicensedComponent):
@requires_license(tier="basic")
def __init__(self, **kwargs):
"""Initialize with license validation."""
super().__init__(
required_features=["quantum_retrieval"],
required_tier="basic"
)
@requires_license(tier="professional")
def enable_grover_search(self):
"""Enable Grover's search (Professional+ only)."""
pass
@requires_license(tier="enterprise")
def enable_advanced_algorithms(self):
"""Enable advanced search algorithms (Enterprise+ only)."""
pass
π API ReferenceΒΆ
Core Retriever ClassesΒΆ
class QuantumRetriever:
def __init__(self, vectorstore, search_algorithm="grover", **config):
"""Initialize quantum retriever."""
async def aget_relevant_documents(self, query: str, **kwargs) -> List[Document]:
"""Get relevant documents asynchronously."""
def get_relevant_documents(self, query: str, **kwargs) -> List[Document]:
"""Get relevant documents synchronously."""
async def quantum_search(self, query: str, **kwargs) -> List[Document]:
"""Perform quantum-enhanced search."""
π License RequirementsΒΆ
- Basic Retriever: Basic license tier (classical search only)
- Professional Retriever: Professional license tier (Grover search)
- Enterprise Retriever: Enterprise license tier (all algorithms)
- Research Retriever: Research license tier (custom algorithms)
Contact bajpaikrishna715@gmail.com for licensing.
Quantum Retriever provides unprecedented search capabilities for next-generation AI applications.