🧠 Quantum Memory Module¶
🔐 Licensed Component - Contact: bajpaikrishna715@gmail.com for licensing
Quantum Memory Architecture¶
graph TB
subgraph "Memory Hierarchy"
A[Quantum RAM - QRAM]
B[Entangled Storage]
C[Coherent Cache]
D[Classical Buffer]
end
subgraph "Access Patterns"
E[Quantum Addressing]
F[Superposition Lookup]
G[Entangled Retrieval]
H[Parallel Access]
end
subgraph "Memory Types"
I[Short-Term Quantum]
J[Long-Term Classical]
K[Working Memory]
L[Episodic Memory]
end
subgraph "Coherence Management"
M[Decoherence Monitoring]
N[Error Correction]
O[State Refreshing]
P[Fidelity Maintenance]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
I --> M
J --> N
K --> O
L --> P
🌟 Core Features¶
Quantum Associative Memory¶
graph LR
subgraph "Input Processing"
A[Query Encoding]
B[Quantum State Preparation]
C[Superposition Creation]
D[Entanglement Setup]
end
subgraph "Memory Search"
E[Quantum Interference]
F[Amplitude Amplification]
G[Pattern Matching]
H[Similarity Assessment]
end
subgraph "Retrieval Process"
I[State Collapse]
J[Measurement]
K[Result Extraction]
L[Confidence Scoring]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
Memory Consolidation¶
graph TB
subgraph "Encoding Phase"
A[Information Input]
B[Quantum Encoding]
C[State Preparation]
D[Initial Storage]
end
subgraph "Consolidation Process"
E[Pattern Recognition]
F[Connection Strengthening]
G[Redundancy Creation]
H[Error Correction]
end
subgraph "Long-term Storage"
I[Stable States]
J[Classical Backup]
K[Distributed Storage]
L[Accessibility Indexing]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
🔧 Implementation¶
Basic Quantum Memory¶
from quantumlangchain.memory import QuantumMemory
import numpy as np
# Initialize quantum memory system
memory = QuantumMemory(
classical_dim=1024,
quantum_dim=8,
decoherence_rate=0.01,
error_correction=True
)
# Store information with quantum encoding
key = "quantum_computing_basics"
value = "Quantum computing uses quantum mechanical phenomena..."
memory.store(key, value, importance=0.9)
# Retrieve with quantum search
result = memory.retrieve("quantum computing", similarity_threshold=0.8)
print(result)
Advanced Memory Configuration¶
from quantumlangchain.memory import (
QuantumMemory,
EntangledMemory,
AdaptiveMemory
)
# Multi-layer memory system
class HybridMemorySystem:
def __init__(self):
# Fast quantum cache
self.qcache = QuantumMemory(
classical_dim=256,
quantum_dim=4,
decoherence_rate=0.1,
refresh_rate="high"
)
# Long-term entangled storage
self.entangled_store = EntangledMemory(
classical_dim=2048,
quantum_dim=12,
entanglement_strength=0.9,
persistence=True
)
# Adaptive working memory
self.working_memory = AdaptiveMemory(
base_dim=512,
max_expansion=4096,
adaptation_rate=0.05
)
async def store_experience(self, experience, context=None):
"""Store experience across memory layers."""
# Immediate storage in quantum cache
await self.qcache.store(
experience["key"],
experience["data"],
tags=experience.get("tags", [])
)
# Contextual storage in working memory
if context:
await self.working_memory.store_with_context(
experience, context
)
# Long-term consolidation
if experience.get("importance", 0) > 0.7:
await self.entangled_store.consolidate(experience)
Quantum Episodic Memory¶
from quantumlangchain.memory import EpisodicMemory
from datetime import datetime
# Episodic memory for experiences
episodic_memory = EpisodicMemory(
temporal_encoding=True,
spatial_encoding=True,
emotional_weighting=True
)
# Store episodic experience
experience = {
"content": "User asked about quantum entanglement",
"timestamp": datetime.now(),
"context": "scientific discussion",
"emotional_tone": "curious",
"outcome": "provided detailed explanation"
}
await episodic_memory.store_episode(experience)
# Retrieve similar episodes
similar_episodes = await episodic_memory.retrieve_episodes(
query="quantum physics questions",
temporal_window="last_week",
similarity_threshold=0.75
)
🎯 Memory Types¶
Short-Term Quantum Memory¶
graph TB
subgraph "Quantum Working Memory"
A[Active Information]
B[Quantum Registers]
C[Superposition States]
D[Coherent Processing]
end
subgraph "Characteristics"
E[High Speed Access]
F[Limited Capacity]
G[Quantum Coherence]
H[Temporary Storage]
end
subgraph "Use Cases"
I[Real-time Processing]
J[Quantum Calculations]
K[Intermediate Results]
L[Active Reasoning]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
Long-Term Classical Memory¶
graph LR
subgraph "Classical Storage"
A[Vector Embeddings]
B[Relational Data]
C[Graph Structures]
D[Hierarchical Trees]
end
subgraph "Persistence Layer"
E[Database Storage]
F[File Systems]
G[Distributed Storage]
H[Cloud Backends]
end
subgraph "Access Methods"
I[Index-based Lookup]
J[Semantic Search]
K[Graph Traversal]
L[Hierarchical Navigation]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
Entangled Memory Networks¶
graph TB
subgraph "Memory Nodes"
A[Node 1 - Facts]
B[Node 2 - Concepts]
C[Node 3 - Relations]
D[Node 4 - Experiences]
end
subgraph "Entanglement Links"
E[Fact-Concept Links]
F[Concept-Relation Links]
G[Relation-Experience Links]
H[Cross-Domain Links]
end
subgraph "Emergent Properties"
I[Holistic Understanding]
J[Non-local Correlations]
K[Quantum Interference]
L[Collective Behavior]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
📊 Performance Characteristics¶
Memory Access Patterns¶
graph LR
subgraph "Classical Access"
A[Sequential Search]
B[O log n Lookup]
C[Cache Miss Penalty]
D[Linear Scaling]
end
subgraph "Quantum Access"
E[Parallel Search]
F[O sqrt n Speedup]
G[Coherent Operations]
H[Quantum Advantage]
end
subgraph "Hybrid Benefits"
I[Best of Both Worlds]
J[Adaptive Selection]
K[Context-Aware Access]
L[Optimized Performance]
end
A --> I
B --> J
C --> K
D --> L
E --> I
F --> J
G --> K
H --> L
Capacity Scaling¶
graph TB
subgraph "Quantum Scaling"
A[Exponential State Space]
B[n Qubits = 2^n States]
C[Superposition Storage]
D[Entanglement Compression]
end
subgraph "Classical Scaling"
E[Linear Growth]
F[Hardware Limitations]
G[Storage Costs]
H[Access Time Growth]
end
subgraph "Hybrid Optimization"
I[Quantum for Hot Data]
J[Classical for Cold Data]
K[Dynamic Allocation]
L[Intelligent Caching]
end
A --> I
B --> J
C --> K
D --> L
E --> I
F --> J
G --> K
H --> L
🛠️ Configuration Options¶
Memory Architecture Configuration¶
# Memory configuration templates
MEMORY_CONFIGS = {
"basic": {
"classical_dim": 512,
"quantum_dim": 4,
"decoherence_rate": 0.1,
"error_correction": False,
"backup_frequency": "hourly"
},
"professional": {
"classical_dim": 1024,
"quantum_dim": 8,
"decoherence_rate": 0.01,
"error_correction": True,
"distributed": False,
"compression": True
},
"enterprise": {
"classical_dim": 2048,
"quantum_dim": 16,
"decoherence_rate": 0.001,
"error_correction": True,
"distributed": True,
"fault_tolerance": True,
"encryption": True
},
"research": {
"classical_dim": 4096,
"quantum_dim": 32,
"decoherence_rate": 0.0001,
"error_correction": True,
"distributed": True,
"experimental_features": True,
"custom_protocols": True
}
}
Coherence Management¶
graph TB
subgraph "Decoherence Sources"
A[Environmental Noise]
B[Thermal Fluctuations]
C[Electromagnetic Interference]
D[System Interactions]
end
subgraph "Mitigation Strategies"
E[Error Correction Codes]
F[Dynamical Decoupling]
G[Decoherence-Free Subspaces]
H[Active Feedback Control]
end
subgraph "Performance Metrics"
I[Coherence Time]
J[Fidelity Measures]
K[Error Rates]
L[Success Probability]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
🔒 License Integration¶
Memory Tier Restrictions¶
graph LR
subgraph "License Tiers"
A[Basic - 512 MB]
B[Professional - 2 GB]
C[Enterprise - 8 GB]
D[Research - Unlimited]
end
subgraph "Quantum Dimensions"
E[4 Qubits]
F[8 Qubits]
G[16 Qubits]
H[32+ Qubits]
end
subgraph "Advanced Features"
I[Basic Operations]
J[Error Correction]
K[Distributed Memory]
L[Experimental Protocols]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
Memory Access Control¶
from quantumlangchain.licensing import requires_license
class QuantumMemory(LicensedComponent):
@requires_license(tier="basic")
def __init__(self, classical_dim=512, quantum_dim=4, **kwargs):
"""Initialize quantum memory with license validation."""
super().__init__(
required_features=["quantum_memory"],
required_tier="basic"
)
# Validate memory limits based on license
max_classical, max_quantum = self._get_memory_limits()
if classical_dim > max_classical:
raise LicenseError(
f"Classical memory limit exceeded. "
f"License allows {max_classical}MB, requested {classical_dim}MB. "
f"Contact: bajpaikrishna715@gmail.com"
)
if quantum_dim > max_quantum:
raise LicenseError(
f"Quantum dimension limit exceeded. "
f"License allows {max_quantum} qubits, requested {quantum_dim}. "
f"Contact: bajpaikrishna715@gmail.com"
)
@requires_license(tier="professional")
def enable_error_correction(self):
"""Enable quantum error correction (Professional+ only)."""
pass
@requires_license(tier="enterprise")
def enable_distributed_storage(self):
"""Enable distributed memory storage (Enterprise+ only)."""
pass
🎯 Advanced Features¶
Quantum Memory Patterns¶
graph TB
subgraph "Content-Addressable Memory"
A[Input Pattern]
B[Quantum Encoding]
C[Associative Recall]
D[Pattern Completion]
end
subgraph "Temporal Memory"
E[Sequence Learning]
F[Temporal Patterns]
G[Predictive Coding]
H[Future State Prediction]
end
subgraph "Hierarchical Memory"
I[Multi-level Organization]
J[Abstraction Layers]
K[Concept Hierarchies]
L[Emergent Structure]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
Memory Optimization¶
# Advanced memory optimization
class OptimizedQuantumMemory:
def __init__(self, **config):
self.config = config
self.optimizer = MemoryOptimizer()
async def optimize_storage(self):
"""Optimize memory storage patterns."""
# Analyze access patterns
patterns = await self.analyzer.analyze_access_patterns()
# Optimize quantum state allocation
optimal_allocation = self.optimizer.optimize_allocation(
patterns, self.config
)
# Reorganize memory structure
await self.reorganize_memory(optimal_allocation)
async def adaptive_compression(self):
"""Adaptive memory compression based on usage."""
# Identify rarely accessed memories
cold_memories = await self.identify_cold_memories()
# Apply quantum compression
for memory in cold_memories:
compressed = await self.quantum_compress(memory)
await self.store_compressed(memory.key, compressed)
async def predictive_prefetch(self, current_context):
"""Predictive memory prefetching."""
# Predict likely future access patterns
predictions = await self.predictor.predict_access(
current_context
)
# Prefetch predicted memories
for prediction in predictions:
if prediction.confidence > 0.8:
await self.prefetch_memory(prediction.key)
📚 API Reference¶
Core Memory Operations¶
class QuantumMemory:
async def store(self, key: str, value: Any, **metadata) -> bool:
"""Store information in quantum memory."""
async def retrieve(self, query: str, **params) -> List[MemoryItem]:
"""Retrieve information using quantum search."""
async def update(self, key: str, value: Any) -> bool:
"""Update existing memory entry."""
async def delete(self, key: str) -> bool:
"""Delete memory entry."""
async def search(self, query: str, **params) -> SearchResults:
"""Semantic search across memory."""
def get_memory_stats(self) -> MemoryStats:
"""Get memory usage statistics."""
async def optimize(self) -> None:
"""Optimize memory organization."""
async def backup(self, location: str) -> bool:
"""Backup memory to specified location."""
Specialized Memory Types¶
class EpisodicMemory(QuantumMemory):
async def store_episode(self, experience: Experience) -> bool:
"""Store episodic experience."""
async def retrieve_episodes(self, query: str, **filters) -> List[Episode]:
"""Retrieve similar episodes."""
class SemanticMemory(QuantumMemory):
async def store_concept(self, concept: Concept) -> bool:
"""Store semantic concept."""
async def retrieve_concepts(self, query: str) -> List[Concept]:
"""Retrieve related concepts."""
class ProceduralMemory(QuantumMemory):
async def store_procedure(self, procedure: Procedure) -> bool:
"""Store procedural knowledge."""
async def retrieve_procedures(self, task: str) -> List[Procedure]:
"""Retrieve relevant procedures."""
🔮 Future Enhancements¶
Planned Memory Features¶
graph TB
subgraph "Near Future"
A[Improved Error Correction]
B[Faster Access Times]
C[Better Compression]
D[Enhanced Coherence]
end
subgraph "Medium Term"
E[Fault-Tolerant Memory]
F[Distributed Quantum Memory]
G[Memory-Memory Entanglement]
H[Quantum Memory Networks]
end
subgraph "Long Term"
I[Topological Memory]
J[Quantum Error-Free Memory]
K[Consciousness-Level Memory]
L[Universal Memory Protocols]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
🔐 License Requirements¶
- Basic Memory: Basic license tier (512MB classical, 4 qubits)
- Professional Memory: Professional license tier (2GB classical, 8 qubits)
- Enterprise Memory: Enterprise license tier (8GB+ classical, 16+ qubits)
- Research Memory: Research license tier (unlimited capacity)
Contact bajpaikrishna715@gmail.com for licensing.
Quantum Memory represents the foundation of quantum-enhanced information storage and retrieval, enabling unprecedented memory capabilities for AI systems.