🔗 Quantum Chains Module¶
🔐 Licensed Component - Contact: bajpaikrishna715@gmail.com for licensing
Quantum Chains Architecture¶
graph TB
subgraph "Chain Types"
A[Basic Quantum Chain]
B[Conversational Chain]
C[RAG Quantum Chain]
D[Multi-Modal Chain]
end
subgraph "Quantum Components"
E[Quantum Processors]
F[Entanglement Engines]
G[Superposition Handlers]
H[Measurement Systems]
end
subgraph "Classical Integration"
I[Language Models]
J[Vector Stores]
K[Memory Systems]
L[Tool Interfaces]
end
subgraph "Hybrid Processing"
M[Quantum-Classical Bridge]
N[State Converters]
O[Optimization Engines]
P[Performance Monitors]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
I --> M
J --> N
K --> O
L --> P
🌟 Core Chain Types¶
Sequential Quantum Chain¶
graph LR
subgraph "Input Processing"
A[Text Input]
B[Tokenization]
C[Semantic Encoding]
D[Quantum State Prep]
end
subgraph "Quantum Processing"
E[Superposition Creation]
F[Entanglement Operations]
G[Quantum Computation]
H[State Evolution]
end
subgraph "Output Generation"
I[Measurement]
J[State Collapse]
K[Classical Decoding]
L[Response Formation]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
Parallel Quantum Chain¶
graph TB
subgraph "Input Distribution"
A[Query Analysis]
B[Sub-task Identification]
C[Parallel Preparation]
D[State Distribution]
end
subgraph "Parallel Processing"
E[Quantum Processor 1]
F[Quantum Processor 2]
G[Quantum Processor 3]
H[Quantum Processor N]
end
subgraph "Result Synthesis"
I[State Collection]
J[Quantum Interference]
K[Result Integration]
L[Coherent Output]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
🔧 Implementation Examples¶
Basic Quantum Chain¶
from quantumlangchain.chains import QuantumChain
from quantumlangchain.prompts import QuantumPromptTemplate
# Create quantum prompt template
prompt = QuantumPromptTemplate(
template="""
Quantum Context: {quantum_context}
Classical Context: {classical_context}
Question: {question}
Please provide a quantum-enhanced response considering both contexts.
""",
quantum_variables=["quantum_context"],
classical_variables=["classical_context", "question"]
)
# Initialize quantum chain
chain = QuantumChain(
prompt=prompt,
backend="qiskit",
quantum_dim=8,
classical_dim=1024,
entanglement_strength=0.7
)
# Execute quantum reasoning
result = await chain.arun({
"quantum_context": "quantum superposition principles",
"classical_context": "machine learning optimization",
"question": "How can quantum superposition improve ML training?"
})
Advanced RAG Quantum Chain¶
from quantumlangchain.chains import RAGQuantumChain
from quantumlangchain.vectorstores import QuantumVectorStore
from quantumlangchain.embeddings import QuantumEmbeddings
class AdvancedRAGSystem:
def __init__(self):
# Quantum embeddings for enhanced representation
self.embeddings = QuantumEmbeddings(
classical_dim=768,
quantum_dim=8,
entanglement_strength=0.8
)
# Quantum vector store for enhanced retrieval
self.vectorstore = QuantumVectorStore(
embeddings=self.embeddings,
quantum_search=True,
superposition_retrieval=True
)
# RAG quantum chain
self.rag_chain = RAGQuantumChain(
vectorstore=self.vectorstore,
quantum_retrieval_strength=0.9,
classical_llm_integration=True,
hybrid_reasoning=True
)
async def enhanced_qa(self, question, context_filter=None):
"""Enhanced Q&A with quantum-classical hybrid retrieval."""
# Quantum-enhanced document retrieval
relevant_docs = await self.vectorstore.quantum_similarity_search(
question,
k=10,
quantum_interference=True,
filter=context_filter
)
# Quantum-enhanced answer generation
answer = await self.rag_chain.arun({
"question": question,
"context": relevant_docs,
"quantum_reasoning_depth": 3
})
return answer
async def multi_hop_reasoning(self, complex_question):
"""Multi-hop reasoning with quantum enhancement."""
# Decompose question into sub-questions
sub_questions = await self.rag_chain.decompose_question(
complex_question
)
# Quantum parallel processing of sub-questions
sub_answers = []
for sub_q in sub_questions:
answer = await self.enhanced_qa(sub_q)
sub_answers.append(answer)
# Quantum synthesis of sub-answers
final_answer = await self.rag_chain.quantum_synthesis(
complex_question, sub_answers
)
return final_answer
Conversational Quantum Chain¶
from quantumlangchain.chains import ConversationalQuantumChain
from quantumlangchain.memory import QuantumConversationMemory
class QuantumChatbot:
def __init__(self):
# Quantum conversation memory
self.memory = QuantumConversationMemory(
classical_buffer_size=2048,
quantum_memory_horizon=10,
entanglement_persistence=True
)
# Conversational quantum chain
self.chain = ConversationalQuantumChain(
memory=self.memory,
personality="helpful_quantum_assistant",
quantum_reasoning_style="creative_analytical"
)
# Context management
self.context_manager = QuantumContextManager(
context_window=8192,
quantum_context_compression=True
)
async def chat(self, user_message, session_id=None):
"""Quantum-enhanced chat interaction."""
# Update quantum context
await self.context_manager.update_context(
user_message, session_id
)
# Generate quantum-enhanced response
response = await self.chain.arun({
"input": user_message,
"session_id": session_id,
"quantum_creativity": 0.7,
"classical_grounding": 0.8
})
# Update conversation memory
await self.memory.add_exchange(
user_message, response, session_id
)
return response
async def multi_turn_reasoning(self, conversation_history):
"""Multi-turn reasoning with quantum memory."""
# Analyze conversation patterns
patterns = await self.memory.analyze_conversation_patterns()
# Quantum-enhanced understanding
deep_context = await self.chain.extract_deep_context(
conversation_history, patterns
)
# Generate contextually aware response
response = await self.chain.context_aware_generation(
deep_context
)
return response
🎯 Specialized Chain Types¶
Multi-Modal Quantum Chain¶
graph TB
subgraph "Input Modalities"
A[Text Input]
B[Image Input]
C[Audio Input]
D[Video Input]
end
subgraph "Quantum Encoding"
E[Text Quantum States]
F[Image Quantum States]
G[Audio Quantum States]
H[Video Quantum States]
end
subgraph "Cross-Modal Processing"
I[Inter-Modal Entanglement]
J[Multi-Modal Superposition]
K[Cross-Modal Reasoning]
L[Unified Understanding]
end
subgraph "Output Generation"
M[Multi-Modal Response]
N[Cross-Modal Insights]
O[Unified Representation]
P[Adaptive Output Format]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
I --> M
J --> N
K --> O
L --> P
Tool-Using Quantum Chain¶
from quantumlangchain.chains import ToolQuantumChain
from quantumlangchain.tools import QuantumToolkit
class QuantumToolAgent:
def __init__(self):
# Quantum-enhanced tools
self.toolkit = QuantumToolkit([
"quantum_calculator",
"quantum_search",
"quantum_analyzer",
"quantum_synthesizer"
])
# Tool-using quantum chain
self.chain = ToolQuantumChain(
tools=self.toolkit.get_tools(),
quantum_tool_selection=True,
parallel_tool_execution=True
)
async def solve_with_tools(self, problem):
"""Solve problem using quantum-enhanced tools."""
# Quantum analysis of problem
problem_analysis = await self.chain.analyze_problem(problem)
# Quantum tool selection
selected_tools = await self.chain.quantum_tool_selection(
problem_analysis
)
# Parallel tool execution with quantum coordination
tool_results = await self.chain.parallel_tool_execution(
selected_tools, problem
)
# Quantum synthesis of results
final_solution = await self.chain.quantum_result_synthesis(
tool_results
)
return final_solution
Research Quantum Chain¶
graph LR
subgraph "Research Process"
A[Hypothesis Formation]
B[Literature Review]
C[Methodology Design]
D[Data Analysis]
end
subgraph "Quantum Enhancement"
E[Quantum Hypothesis Space]
F[Parallel Literature Analysis]
G[Quantum Experiment Design]
H[Quantum Data Processing]
end
subgraph "Research Outputs"
I[Novel Insights]
J[Research Papers]
K[Experimental Protocols]
L[Data Visualizations]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
📊 Performance Optimization¶
Quantum Circuit Optimization¶
graph TB
subgraph "Circuit Design"
A[Gate Selection]
B[Circuit Depth]
C[Connectivity Constraints]
D[Noise Considerations]
end
subgraph "Optimization Strategies"
E[Gate Fusion]
F[Circuit Compilation]
G[Error Mitigation]
H[Resource Estimation]
end
subgraph "Performance Metrics"
I[Execution Time]
J[Fidelity]
K[Resource Usage]
L[Scalability]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
Hybrid Optimization¶
class QuantumChainOptimizer:
def __init__(self, chain):
self.chain = chain
self.optimizer = HybridOptimizer()
async def optimize_performance(self):
"""Optimize quantum chain performance."""
# Analyze current performance
metrics = await self.chain.get_performance_metrics()
# Optimize quantum components
quantum_optimizations = await self.optimize_quantum_components(
metrics
)
# Optimize classical components
classical_optimizations = await self.optimize_classical_components(
metrics
)
# Optimize hybrid interface
hybrid_optimizations = await self.optimize_hybrid_interface(
metrics
)
# Apply optimizations
await self.chain.apply_optimizations(
quantum_optimizations,
classical_optimizations,
hybrid_optimizations
)
async def adaptive_optimization(self):
"""Continuously optimize based on usage patterns."""
while True:
# Monitor performance
current_metrics = await self.chain.get_real_time_metrics()
# Detect performance degradation
if self.detect_degradation(current_metrics):
await self.optimize_performance()
# Adaptive parameter tuning
await self.tune_parameters(current_metrics)
await asyncio.sleep(60) # Check every minute
🔒 License Integration¶
Chain Complexity Restrictions¶
graph LR
subgraph "License Tiers"
A[Basic - Simple Chains]
B[Professional - Complex Chains]
C[Enterprise - Advanced Chains]
D[Research - Experimental Chains]
end
subgraph "Quantum Complexity"
E[4 Qubit Operations]
F[8 Qubit Operations]
G[16+ Qubit Operations]
H[Unlimited Complexity]
end
subgraph "Chain Features"
I[Basic Processing]
J[Advanced Memory]
K[Multi-Modal Support]
L[Research Features]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
License Enforcement in Chains¶
from quantumlangchain.licensing import requires_license
class QuantumChain(LicensedComponent):
@requires_license(tier="basic")
def __init__(self, **kwargs):
"""Initialize quantum chain with license validation."""
super().__init__(
required_features=["quantum_chains"],
required_tier="basic"
)
# Validate quantum complexity
quantum_dim = kwargs.get("quantum_dim", 4)
max_quantum_dim = self._get_max_quantum_complexity()
if quantum_dim > max_quantum_dim:
raise LicenseError(
f"Quantum complexity exceeded. "
f"License allows {max_quantum_dim} qubits, "
f"requested {quantum_dim}. "
f"Contact: bajpaikrishna715@gmail.com"
)
@requires_license(tier="professional")
def enable_advanced_memory(self):
"""Enable advanced memory features (Professional+ only)."""
pass
@requires_license(tier="enterprise")
def enable_multi_modal(self):
"""Enable multi-modal processing (Enterprise+ only)."""
pass
@requires_license(tier="research")
def enable_experimental_features(self):
"""Enable experimental features (Research only)."""
pass
🛠️ Configuration and Customization¶
Chain Configuration Templates¶
# Predefined chain configurations
CHAIN_CONFIGS = {
"basic_qa": {
"quantum_dim": 4,
"classical_dim": 512,
"entanglement_strength": 0.5,
"temperature": 0.7,
"max_tokens": 1024
},
"advanced_reasoning": {
"quantum_dim": 8,
"classical_dim": 1024,
"entanglement_strength": 0.8,
"reasoning_depth": 3,
"multi_step_verification": True
},
"creative_generation": {
"quantum_dim": 12,
"classical_dim": 2048,
"entanglement_strength": 0.9,
"creativity_boost": 0.8,
"diversity_enhancement": True
},
"research_assistant": {
"quantum_dim": 16,
"classical_dim": 4096,
"entanglement_strength": 0.95,
"research_mode": True,
"fact_checking": True,
"citation_generation": True
}
}
Custom Chain Development¶
from quantumlangchain.chains.base import BaseQuantumChain
class CustomQuantumChain(BaseQuantumChain):
def __init__(self, custom_config, **kwargs):
super().__init__(**kwargs)
self.custom_config = custom_config
self._setup_custom_processors()
def _setup_custom_processors(self):
"""Setup custom quantum processors."""
self.custom_quantum_processor = CustomQuantumProcessor(
self.custom_config
)
self.custom_classical_processor = CustomClassicalProcessor(
self.custom_config
)
async def _quantum_process(self, input_state):
"""Custom quantum processing logic."""
# Custom quantum operations
processed_state = await self.custom_quantum_processor.process(
input_state
)
return processed_state
async def _classical_process(self, quantum_output):
"""Custom classical processing logic."""
# Custom classical operations
final_output = await self.custom_classical_processor.process(
quantum_output
)
return final_output
async def arun(self, inputs, **kwargs):
"""Custom chain execution logic."""
# Prepare quantum input state
input_state = await self.prepare_quantum_state(inputs)
# Quantum processing
quantum_output = await self._quantum_process(input_state)
# Classical processing
final_output = await self._classical_process(quantum_output)
return final_output
📚 API Reference¶
Core Chain Classes¶
class QuantumChain:
def __init__(self, prompt, backend="qiskit", **config):
"""Initialize quantum chain."""
async def arun(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
"""Execute chain asynchronously."""
def run(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
"""Execute chain synchronously."""
async def astream(self, inputs: Dict[str, Any]) -> AsyncIterator[str]:
"""Stream chain execution results."""
class RAGQuantumChain(QuantumChain):
def __init__(self, vectorstore, **config):
"""Initialize RAG quantum chain."""
async def quantum_retrieval(self, query: str, **params) -> List[Document]:
"""Quantum-enhanced document retrieval."""
class ConversationalQuantumChain(QuantumChain):
def __init__(self, memory, **config):
"""Initialize conversational quantum chain."""
async def conversation_turn(self, input: str, session_id: str) -> str:
"""Process single conversation turn."""
Chain Utilities¶
class ChainComposer:
@staticmethod
def compose_chains(*chains) -> CompositeQuantumChain:
"""Compose multiple chains into one."""
@staticmethod
def parallel_chains(*chains) -> ParallelQuantumChain:
"""Execute chains in parallel."""
class ChainOptimizer:
def __init__(self, chain):
"""Initialize chain optimizer."""
async def optimize(self) -> None:
"""Optimize chain performance."""
def get_optimization_suggestions(self) -> List[str]:
"""Get optimization suggestions."""
🔮 Future Enhancements¶
Planned Chain Features¶
graph TB
subgraph "Short Term"
A[Better Error Handling]
B[Performance Optimization]
C[Enhanced Memory]
D[Improved Tools]
end
subgraph "Medium Term"
E[Fault-Tolerant Chains]
F[Self-Optimizing Chains]
G[Multi-Agent Chains]
H[Quantum Internet Integration]
end
subgraph "Long Term"
I[Conscious Chains]
J[Universal Problem Solvers]
K[Quantum AGI Chains]
L[Transcendent Intelligence]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
🔐 License Requirements¶
- Basic Chains: Basic license tier (up to 4 qubits)
- Professional Chains: Professional license tier (up to 8 qubits)
- Enterprise Chains: Enterprise license tier (16+ qubits)
- Research Chains: Research license tier (unlimited complexity)
Contact bajpaikrishna715@gmail.com for licensing.
Quantum Chains represent the core execution framework for quantum-enhanced AI reasoning, providing unprecedented capabilities for complex problem-solving and intelligent automation.