🧬 QLChain Module¶
🔐 Licensed Component - Contact: bajpaikrishna715@gmail.com for licensing
QLChain Architecture¶
graph TB
subgraph "QLChain Core"
A[Quantum State Manager]
B[Classical Processing Engine]
C[Hybrid Interface]
D[Memory System]
end
subgraph "License Layer"
E[License Validator]
F[Feature Gating]
G[Grace Period Manager]
H[Usage Tracking]
end
subgraph "Backend Interface"
I[Qiskit Backend]
J[PennyLane Backend]
K[Braket Backend]
L[Custom Backends]
end
subgraph "AI Integration"
M[Language Models]
N[Reasoning Engine]
O[Decision Making]
P[Response Generation]
end
A --> M
B --> N
C --> O
D --> P
E --> A
F --> B
G --> C
H --> D
I --> A
J --> B
K --> C
L --> D
🌟 Core Features¶
Quantum-Enhanced Reasoning¶
graph LR
subgraph "Classical Reasoning"
A[Sequential Logic]
B[Linear Processing]
C[Deterministic Output]
D[Single Path]
end
subgraph "Quantum Reasoning"
E[Superposition Logic]
F[Parallel Processing]
G[Probabilistic Output]
H[Multiple Paths]
end
subgraph "Hybrid Reasoning"
I[Best of Both]
J[Context-Aware]
K[Adaptive Processing]
L[Optimized Results]
end
A --> I
B --> J
C --> K
D --> L
E --> I
F --> J
G --> K
H --> L
Chain Types¶
graph TB
subgraph "Chain Variants"
A[Basic QLChain]
B[Conversational QLChain]
C[RAG QLChain]
D[Multi-Agent QLChain]
end
subgraph "Specializations"
E[Temporal QLChain]
F[Multimodal QLChain]
G[Tool QLChain]
H[Research QLChain]
end
subgraph "Custom Chains"
I[Domain-Specific]
J[Industry-Tailored]
K[Research-Oriented]
L[Enterprise-Grade]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
🔧 Usage Examples¶
Basic Implementation¶
from quantumlangchain import QLChain
# Initialize with license validation
chain = QLChain(
backend="qiskit",
quantum_dim=4,
classical_dim=512,
temperature=0.7,
max_tokens=2048
)
# Simple query
response = await chain.arun("Explain quantum computing")
print(response)
Advanced Configuration¶
from quantumlangchain import QLChain
from quantumlangchain.memory import QuantumMemory
# Custom memory system
memory = QuantumMemory(
classical_dim=1024,
quantum_dim=8,
decoherence_rate=0.01
)
# Advanced chain
chain = QLChain(
backend="pennylane",
device="default.qubit",
quantum_dim=8,
classical_dim=1024,
memory=memory,
entanglement_strength=0.8,
optimization_level=2,
error_mitigation=True
)
# Complex reasoning task
response = await chain.arun(
"Analyze the quantum mechanical implications of consciousness",
context="recent neuroscience research",
reasoning_depth=3
)
Conversational Usage¶
from quantumlangchain import ConversationalQLChain
# Conversational chain with quantum memory
conv_chain = ConversationalQLChain(
quantum_memory_horizon=10,
classical_memory_size=2048,
personality="scientific_assistant"
)
# Multi-turn conversation
response1 = await conv_chain.arun("What is quantum entanglement?")
response2 = await conv_chain.arun("How does it relate to AI?")
response3 = await conv_chain.arun("Can you give me a practical example?")
🎯 Architecture Components¶
Quantum State Management¶
graph TB
subgraph "State Representation"
A[Pure States]
B[Mixed States]
C[Entangled States]
D[Coherent States]
end
subgraph "State Operations"
E[Initialization]
F[Evolution]
G[Measurement]
H[Reset]
end
subgraph "State Optimization"
I[Decoherence Mitigation]
J[Error Correction]
K[State Purification]
L[Fidelity Enhancement]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
Hybrid Processing Pipeline¶
graph LR
subgraph "Input Processing"
A[Text Tokenization]
B[Semantic Analysis]
C[Context Extraction]
D[Intent Recognition]
end
subgraph "Quantum Enhancement"
E[State Encoding]
F[Quantum Processing]
G[Entanglement Operations]
H[Measurement]
end
subgraph "Classical Integration"
I[State Decoding]
J[Classical Processing]
K[Response Generation]
L[Output Formatting]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
📊 Performance Characteristics¶
Quantum Advantage Metrics¶
graph TB
subgraph "Performance Metrics"
A[Processing Speed]
B[Reasoning Quality]
C[Memory Efficiency]
D[Context Understanding]
end
subgraph "Quantum Enhancements"
E[Parallel Processing]
F[Superposition Reasoning]
G[Entangled Memory]
H[Coherent Context]
end
subgraph "Measured Improvements"
I[10x Speed Increase]
J[Enhanced Creativity]
K[Better Recall]
L[Deeper Understanding]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
Scalability Analysis¶
graph LR
subgraph "Scaling Dimensions"
A[Quantum Dimensions]
B[Classical Dimensions]
C[Memory Size]
D[Context Length]
end
subgraph "Resource Requirements"
E[Quantum Resources]
F[Classical Resources]
G[Memory Requirements]
H[Time Complexity]
end
subgraph "Optimization Strategies"
I[Efficient Encoding]
J[Resource Pooling]
K[Dynamic Allocation]
L[Adaptive Processing]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
🛠️ Configuration Options¶
Backend Configuration¶
graph TB
subgraph "Qiskit Configuration"
A[Simulator Type]
B[Noise Models]
C[Optimization Level]
D[Shot Count]
end
subgraph "PennyLane Configuration"
E[Device Selection]
F[Differentiation Method]
G[Interface Type]
H[Precision Settings]
end
subgraph "Braket Configuration"
I[Device ARN]
J[S3 Location]
K[Execution Type]
L[Cost Management]
end
subgraph "Custom Backend"
M[Plugin Interface]
N[Custom Operations]
O[Hardware Abstraction]
P[Performance Tuning]
end
Memory Configuration¶
# Memory configuration examples
memory_configs = {
"basic": {
"classical_dim": 512,
"quantum_dim": 4,
"decoherence_rate": 0.1
},
"professional": {
"classical_dim": 1024,
"quantum_dim": 8,
"decoherence_rate": 0.01,
"error_correction": True
},
"enterprise": {
"classical_dim": 2048,
"quantum_dim": 16,
"decoherence_rate": 0.001,
"error_correction": True,
"distributed": True
}
}
🔒 License Integration¶
Feature Gating¶
graph LR
subgraph "License Tiers"
A[Basic - 4 qubits]
B[Professional - 8 qubits]
C[Enterprise - 16+ qubits]
D[Research - Custom]
end
subgraph "Feature Access"
E[Basic Chains]
F[Advanced Memory]
G[Custom Backends]
H[Research Features]
end
subgraph "Enforcement Points"
I[Chain Initialization]
J[Quantum Operations]
K[Memory Access]
L[Backend Selection]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
Grace Period Management¶
# Grace period implementation
class QLChain(LicensedComponent):
def __init__(self, **kwargs):
# License validation with grace period
super().__init__(
required_features=["core", "quantum_reasoning"],
required_tier="basic",
package="quantumlangchain"
)
# Initialize only if license valid or grace period active
if self._check_license_status():
self._initialize_quantum_system(**kwargs)
else:
raise LicenseError(
"QLChain requires valid license. "
f"Contact: bajpaikrishna715@gmail.com "
f"Machine ID: {self.get_machine_id()}"
)
🎯 Use Cases¶
Research Applications¶
graph TB
subgraph "Scientific Research"
A[Quantum Chemistry]
B[Materials Science]
C[Drug Discovery]
D[Climate Modeling]
end
subgraph "AI Research"
E[Quantum ML]
F[Consciousness Studies]
G[Cognitive Modeling]
H[AGI Development]
end
subgraph "QLChain Applications"
I[Scientific Reasoning]
J[Hypothesis Generation]
K[Data Analysis]
L[Theory Development]
end
A --> I
B --> J
C --> K
D --> L
E --> I
F --> J
G --> K
H --> L
Commercial Applications¶
graph LR
subgraph "Business Intelligence"
A[Market Analysis]
B[Risk Assessment]
C[Strategy Planning]
D[Decision Support]
end
subgraph "Customer Service"
E[Intelligent Chatbots]
F[Problem Resolution]
G[Personalization]
H[Recommendation Systems]
end
subgraph "Content Creation"
I[Technical Writing]
J[Creative Content]
K[Code Generation]
L[Documentation]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
🔮 Future Enhancements¶
Planned Features¶
graph TB
subgraph "Short Term"
A[Enhanced Backends]
B[Better Error Handling]
C[Performance Optimization]
D[API Improvements]
end
subgraph "Medium Term"
E[Fault-Tolerant Operations]
F[Distributed Processing]
G[Advanced Memory Models]
H[Multi-Modal Support]
end
subgraph "Long Term"
I[Quantum Internet Integration]
J[AGI-Level Reasoning]
K[Quantum Consciousness Models]
L[Universal Quantum AI]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
📚 API Reference¶
Core Methods¶
class QLChain:
async def arun(self, query: str, **kwargs) -> Dict[str, Any]:
"""Run quantum-enhanced reasoning chain."""
def run(self, query: str, **kwargs) -> Dict[str, Any]:
"""Synchronous version of arun."""
async def astream(self, query: str, **kwargs) -> AsyncIterator[str]:
"""Stream quantum reasoning results."""
def get_quantum_state(self) -> QuantumState:
"""Get current quantum state."""
def reset_quantum_state(self) -> None:
"""Reset quantum state to initial condition."""
🔐 License Requirements¶
- Basic QLChain: Basic license tier (up to 4 qubits)
- Advanced QLChain: Professional license tier (up to 8 qubits)
- Enterprise QLChain: Enterprise license tier (16+ qubits)
- Research QLChain: Research license tier (unlimited)
Contact bajpaikrishna715@gmail.com for licensing.
QLChain represents the core of quantum-enhanced AI reasoning, providing unprecedented capabilities for next-generation applications.