📝 Prompt Chain Module¶
🔐 Licensed Component - Contact: bajpaikrishna715@gmail.com for licensing
Prompt Chain Architecture¶
graph TB
subgraph "Prompt Processing"
A[Template Management]
B[Variable Interpolation]
C[Context Integration]
D[Quantum Enhancement]
end
subgraph "Chain Types"
E[Sequential Chains]
F[Parallel Chains]
G[Conditional Chains]
H[Adaptive Chains]
end
subgraph "Quantum Features"
I[Superposition Prompts]
J[Entangled Variables]
K[Quantum Logic]
L[Coherent Processing]
end
subgraph "Output Management"
M[Response Processing]
N[Quality Control]
O[Format Adaptation]
P[Result Synthesis]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
I --> M
J --> N
K --> O
L --> P
🌟 Core Features¶
Quantum Prompt Templates¶
graph LR
subgraph "Classical Templates"
A[Static Templates]
B[Simple Variables]
C[Linear Processing]
D[Fixed Structure]
end
subgraph "Quantum Templates"
E[Dynamic Templates]
F[Entangled Variables]
G[Superposition Processing]
H[Adaptive Structure]
end
subgraph "Enhanced Capabilities"
I[Context Awareness]
J[Multi-Modal Support]
K[Intelligent Adaptation]
L[Quantum Creativity]
end
A --> I
B --> J
C --> K
D --> L
E --> I
F --> J
G --> K
H --> L
🔧 Implementation¶
Basic Prompt Chain¶
from quantumlangchain.prompts import QuantumPromptTemplate, PromptChain
# Create quantum prompt template
template = QuantumPromptTemplate(
template="""
Quantum Context: {quantum_context}
Classical Context: {classical_context}
Question: {question}
Please provide a comprehensive answer considering both quantum
and classical perspectives.
""",
quantum_variables=["quantum_context"],
classical_variables=["classical_context", "question"],
entanglement_strength=0.8
)
# Create prompt chain
chain = PromptChain(
prompt=template,
quantum_enhancement=True,
adaptive_formatting=True
)
# Execute with quantum enhancement
result = await chain.arun({
"quantum_context": "superposition and entanglement principles",
"classical_context": "machine learning optimization",
"question": "How can quantum computing improve ML training?"
})
Advanced Multi-Step Prompt Chain¶
from quantumlangchain.prompts import MultiStepPromptChain
class AdvancedPromptSystem:
def __init__(self):
# Step 1: Analysis prompt
self.analysis_prompt = QuantumPromptTemplate(
template="Analyze the following problem: {problem}",
quantum_variables=["problem"],
analysis_depth=3
)
# Step 2: Solution generation prompt
self.solution_prompt = QuantumPromptTemplate(
template="""
Based on the analysis: {analysis}
Generate potential solutions for: {original_problem}
""",
quantum_variables=["analysis"],
classical_variables=["original_problem"],
creativity_boost=0.8
)
# Step 3: Validation prompt
self.validation_prompt = QuantumPromptTemplate(
template="""
Validate the following solution: {solution}
For problem: {problem}
Consider: {validation_criteria}
""",
quantum_variables=["solution"],
classical_variables=["problem", "validation_criteria"]
)
# Create multi-step chain
self.chain = MultiStepPromptChain([
self.analysis_prompt,
self.solution_prompt,
self.validation_prompt
])
async def solve_complex_problem(self, problem):
"""Solve complex problems using multi-step quantum prompting."""
# Execute chain with quantum coordination
result = await self.chain.arun({
"problem": problem,
"validation_criteria": "accuracy, feasibility, innovation"
})
return result
Conditional Prompt Chain¶
class ConditionalPromptChain:
def __init__(self):
# Technical prompt for technical queries
self.technical_prompt = QuantumPromptTemplate(
template="""
Technical Analysis Required:
Query: {query}
Provide detailed technical explanation with:
- Scientific principles
- Mathematical foundations
- Implementation details
""",
technical_depth=5,
quantum_precision=True
)
# Creative prompt for creative queries
self.creative_prompt = QuantumPromptTemplate(
template="""
Creative Exploration:
Topic: {query}
Think creatively and provide:
- Novel perspectives
- Innovative ideas
- Imaginative solutions
""",
creativity_boost=0.9,
quantum_inspiration=True
)
# General prompt for other queries
self.general_prompt = QuantumPromptTemplate(
template="""
General Response:
Question: {query}
Provide a balanced, informative response.
""",
balance_factor=0.7
)
async def adaptive_prompting(self, query):
"""Select appropriate prompt based on query characteristics."""
# Analyze query type
query_type = await self.analyze_query_type(query)
if query_type == "technical":
prompt = self.technical_prompt
elif query_type == "creative":
prompt = self.creative_prompt
else:
prompt = self.general_prompt
# Execute with selected prompt
result = await prompt.aformat_and_run({"query": query})
return result
🎯 Prompt Types¶
Template Categories¶
graph TB
subgraph "Question-Answer Templates"
A[Simple Q&A]
B[Complex Reasoning]
C[Multi-Turn Dialog]
D[Educational Explanations]
end
subgraph "Creative Templates"
E[Story Generation]
F[Poetry Creation]
G[Idea Brainstorming]
H[Design Concepts]
end
subgraph "Technical Templates"
I[Code Generation]
J[Mathematical Proofs]
K[Scientific Analysis]
L[System Design]
end
subgraph "Business Templates"
M[Report Writing]
N[Strategy Planning]
O[Market Analysis]
P[Decision Support]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
I --> M
J --> N
K --> O
L --> P
Advanced Prompt Engineering¶
class QuantumPromptEngineer:
def __init__(self):
self.prompt_optimizer = QuantumPromptOptimizer()
self.template_generator = TemplateGenerator()
async def optimize_prompt_template(self, template, examples):
"""Optimize prompt template using quantum algorithms."""
# Analyze prompt performance
performance_metrics = await self.analyze_performance(
template, examples
)
# Generate quantum-optimized variations
variations = await self.prompt_optimizer.generate_variations(
template
)
# Test variations in quantum superposition
optimal_template = await self.quantum_template_testing(
variations, examples
)
return optimal_template
async def auto_generate_templates(self, domain, requirements):
"""Auto-generate templates for specific domains."""
# Analyze domain characteristics
domain_analysis = await self.analyze_domain(domain)
# Generate template candidates
candidates = await self.template_generator.generate_candidates(
domain_analysis, requirements
)
# Quantum selection of best templates
best_templates = await self.quantum_template_selection(
candidates
)
return best_templates
📊 Performance Optimization¶
Prompt Performance Metrics¶
graph LR
subgraph "Quality Metrics"
A[Relevance Score]
B[Accuracy Measure]
C[Creativity Index]
D[Coherence Rating]
end
subgraph "Efficiency Metrics"
E[Response Time]
F[Token Usage]
G[Processing Cost]
H[Resource Utilization]
end
subgraph "Quantum Metrics"
I[Entanglement Quality]
J[Coherence Time]
K[Quantum Advantage]
L[Superposition Effectiveness]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
Prompt Optimization¶
class PromptOptimizer:
def __init__(self):
self.quantum_optimizer = QuantumOptimizer()
self.classical_optimizer = ClassicalOptimizer()
async def optimize_prompt_chain(self, chain, test_cases):
"""Optimize entire prompt chain performance."""
# Analyze current performance
baseline_metrics = await self.evaluate_chain(chain, test_cases)
# Quantum optimization of prompt templates
quantum_optimizations = await self.quantum_optimizer.optimize(
chain.prompts
)
# Classical optimization of chain structure
classical_optimizations = await self.classical_optimizer.optimize(
chain.structure
)
# Combine optimizations
optimized_chain = await self.combine_optimizations(
chain, quantum_optimizations, classical_optimizations
)
# Validate improvements
improved_metrics = await self.evaluate_chain(
optimized_chain, test_cases
)
return {
"optimized_chain": optimized_chain,
"baseline_metrics": baseline_metrics,
"improved_metrics": improved_metrics,
"improvement_factor": improved_metrics / baseline_metrics
}
🔒 License Integration¶
Prompt Chain Restrictions¶
graph LR
subgraph "License Tiers"
A[Basic - Simple Chains]
B[Professional - Complex Chains]
C[Enterprise - Advanced Chains]
D[Research - Custom Chains]
end
subgraph "Template Limits"
E[10 Templates]
F[50 Templates]
G[200+ Templates]
H[Unlimited]
end
A --> E
B --> F
C --> G
D --> H
License Enforcement¶
from quantumlangchain.licensing import requires_license
class PromptChain(LicensedComponent):
@requires_license(tier="basic")
def __init__(self, **kwargs):
"""Initialize with license validation."""
super().__init__(
required_features=["prompt_chains"],
required_tier="basic"
)
# Validate template limits
max_templates = self._get_max_templates()
template_count = len(kwargs.get("templates", []))
if template_count > max_templates:
raise LicenseError(
f"Template limit exceeded. "
f"License allows {max_templates} templates, "
f"requested {template_count}. "
f"Contact: bajpaikrishna715@gmail.com"
)
@requires_license(tier="professional")
def enable_quantum_prompting(self):
"""Enable quantum prompting features (Professional+ only)."""
pass
@requires_license(tier="enterprise")
def enable_advanced_chaining(self):
"""Enable advanced chaining features (Enterprise+ only)."""
pass
📚 API Reference¶
Core Prompt Classes¶
class QuantumPromptTemplate:
def __init__(self, template: str, quantum_variables: List[str] = None, **config):
"""Initialize quantum prompt template."""
async def aformat(self, **kwargs) -> str:
"""Format template with quantum enhancement."""
def format(self, **kwargs) -> str:
"""Format template synchronously."""
async def aformat_and_run(self, variables: Dict[str, Any]) -> str:
"""Format and execute with quantum processing."""
class PromptChain:
def __init__(self, prompts: List[QuantumPromptTemplate], **config):
"""Initialize prompt chain."""
async def arun(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
"""Execute prompt chain asynchronously."""
def run(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
"""Execute prompt chain synchronously."""
async def optimize(self, test_cases: List[Dict]) -> None:
"""Optimize prompt chain performance."""
🔮 Future Enhancements¶
Planned Prompt Features¶
graph TB
subgraph "Near Future"
A[Better Templates]
B[Faster Processing]
C[Enhanced Optimization]
D[Improved Accuracy]
end
subgraph "Medium Term"
E[Self-Optimizing Prompts]
F[Quantum Prompt Networks]
G[Adaptive Learning]
H[Multi-Modal Prompts]
end
subgraph "Long Term"
I[Conscious Prompting]
J[Universal Prompt Language]
K[Quantum Prompt Evolution]
L[AGI-Level Templates]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
🔐 License Requirements¶
- Basic Prompts: Basic license tier (up to 10 templates)
- Professional Prompts: Professional license tier (up to 50 templates)
- Enterprise Prompts: Enterprise license tier (200+ templates)
- Research Prompts: Research license tier (unlimited templates)
Contact bajpaikrishna715@gmail.com for licensing.
Prompt Chain provides quantum-enhanced prompt engineering and management capabilities for next-generation AI applications.