🤝 Entangled Agents Module¶
🔐 Licensed Component - Contact: bajpaikrishna715@gmail.com for licensing
Entangled Agents Architecture¶
graph TB
subgraph "Agent Network"
A[Agent Alpha]
B[Agent Beta]
C[Agent Gamma]
D[Agent Delta]
end
subgraph "Entanglement Layer"
E[Quantum Channels]
F[Shared States]
G[Non-local Correlations]
H[Coherent Communication]
end
subgraph "Coordination Mechanisms"
I[State Synchronization]
J[Distributed Decision Making]
K[Collective Intelligence]
L[Emergent Behaviors]
end
subgraph "Control Systems"
M[Entanglement Management]
N[Decoherence Mitigation]
O[Error Correction]
P[Performance Monitoring]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
I --> M
J --> N
K --> O
L --> P
🌟 Core Capabilities¶
Quantum Communication¶
graph LR
subgraph "Classical Communication"
A[Message Passing]
B[Sequential Processing]
C[Limited Bandwidth]
D[Information Loss]
end
subgraph "Quantum Communication"
E[State Teleportation]
F[Parallel Processing]
G[Unlimited Bandwidth]
H[Perfect Fidelity]
end
subgraph "Hybrid Protocol"
I[Best of Both]
J[Adaptive Selection]
K[Context-Aware]
L[Optimal Performance]
end
A --> I
B --> J
C --> K
D --> L
E --> I
F --> J
G --> K
H --> L
Collective Intelligence¶
graph TB
subgraph "Individual Agents"
A[Local Knowledge]
B[Local Processing]
C[Local Decisions]
D[Limited Perspective]
end
subgraph "Entangled Network"
E[Shared Knowledge]
F[Distributed Processing]
G[Collective Decisions]
H[Global Perspective]
end
subgraph "Emergent Properties"
I[Swarm Intelligence]
J[Distributed Cognition]
K[Collective Problem Solving]
L[Adaptive Coordination]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
🔧 Implementation¶
Basic Entangled Agent Network¶
from quantumlangchain.agents import EntangledAgent, AgentNetwork
# Create individual agents
agent_a = EntangledAgent(
name="alpha",
role="coordinator",
quantum_dim=8,
specialization="task_planning"
)
agent_b = EntangledAgent(
name="beta",
role="executor",
quantum_dim=8,
specialization="data_processing"
)
agent_c = EntangledAgent(
name="gamma",
role="analyzer",
quantum_dim=8,
specialization="pattern_recognition"
)
# Create entangled network
network = AgentNetwork(
agents=[agent_a, agent_b, agent_c],
entanglement_strength=0.8,
topology="fully_connected"
)
# Establish quantum entanglement
await network.entangle_agents()
# Collaborative task execution
task = "Analyze large dataset and generate insights"
result = await network.collaborative_solve(task)
Advanced Multi-Agent System¶
from quantumlangchain.agents import (
EntangledAgent,
AgentNetwork,
QuantumOrchestrator
)
class AdvancedAgentSystem:
def __init__(self):
# Specialized agent roles
self.coordinator = EntangledAgent(
role="coordinator",
capabilities=["planning", "resource_allocation"],
quantum_dim=12
)
self.researchers = [
EntangledAgent(
role="researcher",
specialization=field,
quantum_dim=8
) for field in ["physics", "chemistry", "biology", "cs"]
]
self.analyzers = [
EntangledAgent(
role="analyzer",
specialization=analysis_type,
quantum_dim=8
) for analysis_type in ["statistical", "pattern", "semantic"]
]
self.synthesizer = EntangledAgent(
role="synthesizer",
capabilities=["integration", "conclusion"],
quantum_dim=12
)
# Create hierarchical network
self.network = AgentNetwork(
agents=([self.coordinator] +
self.researchers +
self.analyzers +
[self.synthesizer]),
topology="hierarchical",
entanglement_strength=0.9
)
# Quantum orchestrator for coordination
self.orchestrator = QuantumOrchestrator(
network=self.network,
coordination_strategy="quantum_consensus"
)
async def solve_complex_problem(self, problem):
"""Solve complex problem using entangled agents."""
# Quantum planning phase
plan = await self.coordinator.create_quantum_plan(problem)
# Distributed research phase
research_tasks = plan.decompose_into_research_tasks()
research_results = await self.parallel_research(research_tasks)
# Quantum analysis phase
analysis_results = await self.quantum_analysis(research_results)
# Synthesis and conclusion
final_result = await self.synthesizer.synthesize_results(
research_results, analysis_results
)
return final_result
async def parallel_research(self, tasks):
"""Execute research tasks in parallel using entangled agents."""
# Assign tasks to specialized researchers
assignments = await self.orchestrator.assign_tasks(
tasks, self.researchers
)
# Execute tasks with quantum acceleration
results = []
for agent, task in assignments:
result = await agent.execute_with_entanglement(task)
results.append(result)
# Quantum consensus on results
consensus_results = await self.orchestrator.quantum_consensus(
results
)
return consensus_results
Quantum Swarm Intelligence¶
from quantumlangchain.agents import QuantumSwarm
class QuantumSwarmSystem:
def __init__(self, swarm_size=50):
# Create quantum swarm
self.swarm = QuantumSwarm(
size=swarm_size,
quantum_dim=4, # Each agent has 4 qubits
entanglement_pattern="small_world",
communication_protocol="quantum_gossip"
)
# Initialize swarm intelligence parameters
self.pheromone_strength = 0.8
self.exploration_rate = 0.3
self.convergence_threshold = 0.95
async def solve_optimization_problem(self, problem):
"""Solve optimization using quantum swarm intelligence."""
# Initialize swarm with problem
await self.swarm.initialize_problem(problem)
# Quantum swarm optimization loop
for iteration in range(self.max_iterations):
# Each agent explores solution space
await self.swarm.parallel_exploration()
# Quantum communication between agents
await self.swarm.quantum_information_sharing()
# Update global best solution
await self.swarm.update_global_optimum()
# Check convergence
if await self.swarm.check_convergence():
break
return await self.swarm.get_best_solution()
async def adaptive_problem_solving(self, dynamic_problem):
"""Solve dynamic problems with adaptive swarm."""
# Monitor problem changes
while not dynamic_problem.is_solved():
# Detect environment changes
changes = await dynamic_problem.detect_changes()
if changes:
# Adapt swarm configuration
await self.swarm.adapt_to_changes(changes)
# Continue optimization
await self.quantum_optimization_step()
# Yield control for other tasks
await asyncio.sleep(0.01)
🎯 Agent Types and Roles¶
Specialized Agent Architectures¶
graph TB
subgraph "Coordinator Agents"
A[Task Planner]
B[Resource Manager]
C[Quality Controller]
D[System Monitor]
end
subgraph "Worker Agents"
E[Data Processors]
F[Pattern Analyzers]
G[Content Generators]
H[Decision Makers]
end
subgraph "Specialist Agents"
I[Domain Experts]
J[Method Specialists]
K[Tool Operators]
L[Interface Agents]
end
subgraph "Meta Agents"
M[Learning Agents]
N[Adaptation Agents]
O[Evolution Agents]
P[Emergence Monitors]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
I --> M
J --> N
K --> O
L --> P
Agent Communication Protocols¶
graph LR
subgraph "Quantum Protocols"
A[Quantum Teleportation]
B[Superdense Coding]
C[Quantum Key Distribution]
D[Entanglement Swapping]
end
subgraph "Hybrid Protocols"
E[Quantum-Classical Hybrid]
F[Adaptive Protocol Selection]
G[Context-Aware Communication]
H[Error-Resilient Protocols]
end
subgraph "Network Topologies"
I[Fully Connected]
J[Hierarchical]
K[Small World]
L[Scale-Free]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
📊 Performance Characteristics¶
Scaling Properties¶
graph TB
subgraph "Classical Multi-Agent"
A[Linear Communication]
B[Exponential Coordination Cost]
C[Bottleneck Formation]
D[Coordination Overhead]
end
subgraph "Quantum Multi-Agent"
E[Parallel Communication]
F[Polynomial Coordination]
G[No Bottlenecks]
H[Quantum Speedup]
end
subgraph "Performance Metrics"
I[Task Completion Time]
J[Communication Efficiency]
K[Coordination Quality]
L[Scalability Factor]
end
A --> I
B --> J
C --> K
D --> L
E --> I
F --> J
G --> K
H --> L
Entanglement Quality Metrics¶
graph LR
subgraph "Entanglement Measures"
A[Concurrence]
B[Entanglement Entropy]
C[Fidelity]
D[Bell State Correlations]
end
subgraph "Network Metrics"
E[Connectivity]
F[Robustness]
G[Coherence Time]
H[Information Flow]
end
subgraph "Performance Indicators"
I[Coordination Efficiency]
J[Decision Quality]
K[Adaptation Speed]
L[Emergence Level]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
🛠️ Configuration and Management¶
Network Configuration¶
# Agent network configuration templates
NETWORK_CONFIGS = {
"research_team": {
"size": 5,
"topology": "hierarchical",
"roles": ["coordinator", "researcher", "analyzer", "critic", "synthesizer"],
"entanglement_strength": 0.8,
"specializations": {
"researcher": ["literature_review", "data_collection"],
"analyzer": ["statistical_analysis", "pattern_recognition"],
"critic": ["quality_assessment", "peer_review"]
}
},
"optimization_swarm": {
"size": 100,
"topology": "small_world",
"roles": ["explorer", "exploiter", "messenger"],
"entanglement_strength": 0.6,
"parameters": {
"exploration_rate": 0.3,
"exploitation_rate": 0.7,
"communication_frequency": 0.1
}
},
"creative_collective": {
"size": 8,
"topology": "fully_connected",
"roles": ["ideator", "evaluator", "refiner", "integrator"],
"entanglement_strength": 0.9,
"creativity_parameters": {
"divergence_factor": 0.8,
"convergence_factor": 0.6,
"novelty_threshold": 0.7
}
}
}
Entanglement Management¶
graph TB
subgraph "Entanglement Creation"
A[Agent Pairing]
B[State Preparation]
C[Entangling Operations]
D[Verification]
end
subgraph "Entanglement Maintenance"
E[Decoherence Monitoring]
F[Error Detection]
G[Correction Protocols]
H[State Refreshing]
end
subgraph "Entanglement Optimization"
I[Strength Tuning]
J[Topology Adaptation]
K[Dynamic Reconfiguration]
L[Performance Optimization]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
🔒 License Integration¶
Agent Network Restrictions¶
graph LR
subgraph "License Tiers"
A[Basic - 3 Agents]
B[Professional - 10 Agents]
C[Enterprise - 50 Agents]
D[Research - Unlimited]
end
subgraph "Entanglement Features"
E[Pair Entanglement]
F[Multi-party Entanglement]
G[Network Entanglement]
H[Custom Protocols]
end
subgraph "Advanced Capabilities"
I[Basic Coordination]
J[Quantum Consensus]
K[Swarm Intelligence]
L[Emergent Behaviors]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
License Enforcement¶
from quantumlangchain.licensing import requires_license
class EntangledAgent(LicensedComponent):
@requires_license(tier="basic")
def __init__(self, name, role, **kwargs):
"""Initialize entangled agent with license validation."""
super().__init__(
required_features=["entangled_agents"],
required_tier="basic"
)
self.name = name
self.role = role
self._validate_configuration(kwargs)
def _validate_configuration(self, config):
"""Validate configuration against license limits."""
max_agents = self._get_max_agents()
if len(AgentNetwork.get_all_agents()) >= max_agents:
raise LicenseError(
f"Agent limit exceeded. "
f"License allows {max_agents} agents maximum. "
f"Contact: bajpaikrishna715@gmail.com "
f"Machine ID: {self.get_machine_id()}"
)
class AgentNetwork(LicensedComponent):
@requires_license(tier="professional")
def enable_quantum_consensus(self):
"""Enable quantum consensus (Professional+ only)."""
pass
@requires_license(tier="enterprise")
def enable_swarm_intelligence(self):
"""Enable swarm intelligence (Enterprise+ only)."""
pass
@requires_license(tier="research")
def enable_emergent_behaviors(self):
"""Enable emergent behavior research (Research only)."""
pass
🎯 Use Cases and Applications¶
Scientific Research¶
graph TB
subgraph "Research Team"
A[Principal Investigator]
B[Data Scientist]
C[Domain Expert]
D[Statistician]
end
subgraph "Research Process"
E[Hypothesis Generation]
F[Experiment Design]
G[Data Collection]
H[Analysis & Interpretation]
end
subgraph "Quantum Enhancement"
I[Parallel Hypothesis Testing]
J[Quantum-Enhanced Analysis]
K[Entangled Peer Review]
L[Collective Intelligence]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
Business Applications¶
# Business intelligence multi-agent system
class BusinessIntelligenceSystem:
def __init__(self):
# Market analysis agents
self.market_analysts = [
EntangledAgent(
role="market_analyst",
specialization=market,
quantum_dim=6
) for market in ["stocks", "bonds", "commodities", "crypto"]
]
# Risk assessment agents
self.risk_assessors = [
EntangledAgent(
role="risk_assessor",
specialization=risk_type,
quantum_dim=6
) for risk_type in ["credit", "market", "operational", "liquidity"]
]
# Strategy agents
self.strategists = [
EntangledAgent(
role="strategist",
specialization="portfolio_optimization",
quantum_dim=8
)
]
# Create entangled network
self.network = AgentNetwork(
agents=(self.market_analysts +
self.risk_assessors +
self.strategists),
topology="hierarchical",
entanglement_strength=0.85
)
async def generate_investment_strategy(self, portfolio, constraints):
"""Generate optimal investment strategy."""
# Parallel market analysis
market_analysis = await self.parallel_market_analysis()
# Quantum risk assessment
risk_profile = await self.quantum_risk_assessment(portfolio)
# Entangled strategy optimization
strategy = await self.optimize_strategy(
market_analysis, risk_profile, constraints
)
return strategy
Creative Applications¶
graph LR
subgraph "Creative Agents"
A[Idea Generator]
B[Style Specialist]
C[Content Creator]
D[Quality Evaluator]
end
subgraph "Creative Process"
E[Brainstorming]
F[Concept Development]
G[Content Creation]
H[Refinement]
end
subgraph "Quantum Creativity"
I[Superposition Ideas]
J[Entangled Styles]
K[Quantum Inspiration]
L[Collective Creativity]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
📚 API Reference¶
Core Agent Classes¶
class EntangledAgent:
def __init__(self, name: str, role: str, **config):
"""Initialize entangled agent."""
async def entangle_with(self, other_agent: 'EntangledAgent') -> bool:
"""Establish quantum entanglement with another agent."""
async def communicate(self, message: Any, target: str = None) -> Any:
"""Quantum communication with entangled agents."""
async def collaborate(self, task: Task, partners: List['EntangledAgent']) -> Result:
"""Collaborate with other agents on a task."""
def get_entanglement_state(self) -> QuantumState:
"""Get current entanglement state."""
class AgentNetwork:
def __init__(self, agents: List[EntangledAgent], **config):
"""Initialize agent network."""
async def entangle_all(self) -> bool:
"""Establish entanglement across the network."""
async def broadcast(self, message: Any, sender: str) -> None:
"""Broadcast message to all agents."""
async def consensus(self, question: str) -> ConsensusResult:
"""Reach quantum consensus on a question."""
def get_network_state(self) -> NetworkState:
"""Get current network state."""
Specialized Network Types¶
class QuantumSwarm(AgentNetwork):
async def swarm_optimization(self, objective: Callable) -> Solution:
"""Perform swarm optimization."""
async def adaptive_behavior(self, environment: Environment) -> Behavior:
"""Adapt behavior to environment changes."""
class HierarchicalNetwork(AgentNetwork):
async def hierarchical_processing(self, task: Task) -> Result:
"""Process task through hierarchy."""
def get_hierarchy_structure(self) -> HierarchyTree:
"""Get current hierarchy structure."""
class CreativeCollective(AgentNetwork):
async def creative_synthesis(self, prompt: str) -> CreativeOutput:
"""Generate creative output collaboratively."""
async def style_transfer(self, content: Any, style: Style) -> Any:
"""Transfer style using collective intelligence."""
🔮 Future Developments¶
Planned Enhancements¶
graph TB
subgraph "Near Term"
A[Better Entanglement Protocols]
B[Improved Coordination]
C[Enhanced Communication]
D[Optimized Performance]
end
subgraph "Medium Term"
E[Fault-Tolerant Networks]
F[Self-Organizing Systems]
G[Adaptive Topologies]
H[Emergent Intelligence]
end
subgraph "Long Term"
I[Quantum Internet Integration]
J[Conscious Agent Networks]
K[Universal Collaboration]
L[Transcendent Intelligence]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
🔐 License Requirements¶
- Basic Agents: Basic license tier (up to 3 agents)
- Professional Agents: Professional license tier (up to 10 agents)
- Enterprise Agents: Enterprise license tier (up to 50 agents)
- Research Agents: Research license tier (unlimited agents)
Contact bajpaikrishna715@gmail.com for licensing.
Entangled Agents represent the pinnacle of multi-agent AI systems, leveraging quantum entanglement for unprecedented coordination and collective intelligence capabilities.