🧠 Context Manager Module¶
🔐 Licensed Component - Contact: bajpaikrishna715@gmail.com for licensing
Context Manager Architecture¶
graph TB
subgraph "Context Processing"
A[Context Ingestion]
B[Relevance Filtering]
C[Quantum Encoding]
D[Memory Integration]
end
subgraph "Context Types"
E[Conversational Context]
F[Document Context]
G[Temporal Context]
H[Spatial Context]
end
subgraph "Quantum Enhancement"
I[Superposition Context]
J[Entangled Relationships]
K[Coherent Retrieval]
L[Interference Patterns]
end
subgraph "Context Management"
M[Context Fusion]
N[Priority Management]
O[Compression Algorithms]
P[Attention Mechanisms]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
I --> M
J --> N
K --> O
L --> P
🌟 Core Features¶
Quantum Context Understanding¶
graph LR
subgraph "Classical Context"
A[Linear Context]
B[Sequential Processing]
C[Limited Memory]
D[Simple Relationships]
end
subgraph "Quantum Context"
E[Multi-Dimensional Context]
F[Parallel Processing]
G[Quantum Memory]
H[Complex Relationships]
end
subgraph "Enhanced Capabilities"
I[Deep Understanding]
J[Rich Associations]
K[Temporal Coherence]
L[Contextual Intelligence]
end
A --> I
B --> J
C --> K
D --> L
E --> I
F --> J
G --> K
H --> L
🔧 Implementation¶
Basic Context Manager¶
from quantumlangchain.context import QuantumContextManager
# Initialize context manager
context_manager = QuantumContextManager(
max_context_length=8192,
quantum_compression=True,
entanglement_strength=0.8,
temporal_awareness=True
)
# Add context information
await context_manager.add_context(
"The user is interested in quantum computing applications",
context_type="user_interest",
importance=0.9
)
await context_manager.add_context(
"Previous conversation covered machine learning basics",
context_type="conversation_history",
importance=0.7
)
# Retrieve relevant context for a query
relevant_context = await context_manager.get_relevant_context(
"How does quantum computing help with AI?",
max_items=5,
quantum_retrieval=True
)
Advanced Multi-Modal Context Manager¶
from quantumlangchain.context import MultiModalContextManager
class AdvancedContextSystem:
def __init__(self):
self.context_manager = MultiModalContextManager(
text_dim=1024,
image_dim=768,
audio_dim=512,
quantum_dim=16,
cross_modal_entanglement=True
)
# Context processors for different modalities
self.text_processor = TextContextProcessor()
self.image_processor = ImageContextProcessor()
self.audio_processor = AudioContextProcessor()
self.temporal_processor = TemporalContextProcessor()
async def process_multimodal_context(self, inputs):
"""Process and integrate multi-modal context."""
contexts = []
# Process each modality
if "text" in inputs:
text_context = await self.text_processor.process(
inputs["text"]
)
contexts.append(text_context)
if "image" in inputs:
image_context = await self.image_processor.process(
inputs["image"]
)
contexts.append(image_context)
if "audio" in inputs:
audio_context = await self.audio_processor.process(
inputs["audio"]
)
contexts.append(audio_context)
# Quantum fusion of contexts
fused_context = await self.context_manager.quantum_fusion(
contexts
)
# Add temporal relationships
temporal_context = await self.temporal_processor.add_temporal_info(
fused_context
)
return temporal_context
async def adaptive_context_management(self, query, session_info):
"""Adaptively manage context based on query and session."""
# Analyze query requirements
context_requirements = await self.analyze_context_needs(query)
# Retrieve context based on requirements
if context_requirements["depth"] > 0.8:
# Deep context retrieval
context = await self.context_manager.deep_context_retrieval(
query, session_info
)
elif context_requirements["breadth"] > 0.8:
# Broad context retrieval
context = await self.context_manager.broad_context_retrieval(
query, session_info
)
else:
# Standard context retrieval
context = await self.context_manager.standard_context_retrieval(
query, session_info
)
return context
Temporal Context Management¶
class TemporalContextManager:
def __init__(self):
self.temporal_memory = TemporalQuantumMemory()
self.event_tracker = EventTracker()
self.causality_analyzer = CausalityAnalyzer()
async def manage_temporal_context(self, event, timestamp):
"""Manage context with temporal awareness."""
# Record event with timestamp
await self.event_tracker.record_event(event, timestamp)
# Analyze temporal relationships
temporal_relations = await self.causality_analyzer.analyze_causality(
event, self.event_tracker.get_recent_events()
)
# Update temporal memory
await self.temporal_memory.update_with_temporal_info(
event, temporal_relations
)
# Maintain temporal coherence
await self.maintain_temporal_coherence()
async def retrieve_temporal_context(self, query, time_window=None):
"""Retrieve context with temporal constraints."""
# Determine relevant time window
if time_window is None:
time_window = await self.determine_optimal_time_window(query)
# Retrieve events in time window
relevant_events = await self.event_tracker.get_events_in_window(
time_window
)
# Quantum temporal processing
temporal_context = await self.temporal_memory.quantum_temporal_search(
query, relevant_events
)
return temporal_context
🎯 Context Types¶
Context Categories¶
graph TB
subgraph "Conversational Context"
A[Dialog History]
B[User Preferences]
C[Interaction Patterns]
D[Emotional State]
end
subgraph "Knowledge Context"
E[Domain Knowledge]
F[Factual Information]
G[Procedural Knowledge]
H[Conceptual Relationships]
end
subgraph "Environmental Context"
I[Temporal Context]
J[Spatial Context]
K[Cultural Context]
L[Situational Context]
end
subgraph "System Context"
M[Application State]
N[Resource Availability]
O[Performance Metrics]
P[Configuration Settings]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
I --> M
J --> N
K --> O
L --> P
Context Processing Pipeline¶
class ContextProcessingPipeline:
def __init__(self):
self.stages = [
ContextExtractionStage(),
RelevanceFilteringStage(),
QuantumEncodingStage(),
RelationshipMappingStage(),
PriorityAssignmentStage(),
CompressionStage()
]
async def process_context(self, raw_context):
"""Process context through all pipeline stages."""
processed_context = raw_context
for stage in self.stages:
processed_context = await stage.process(processed_context)
# Quality check after each stage
quality_score = await stage.assess_quality(processed_context)
if quality_score < 0.7:
# Retry with different parameters
processed_context = await stage.retry_with_adjustment(
processed_context
)
return processed_context
async def adaptive_processing(self, context, requirements):
"""Adapt processing based on specific requirements."""
# Select relevant stages based on requirements
selected_stages = await self.select_stages(requirements)
# Configure stages for optimal performance
for stage in selected_stages:
await stage.configure_for_requirements(requirements)
# Process with selected and configured stages
result = context
for stage in selected_stages:
result = await stage.process(result)
return result
📊 Performance Optimization¶
Context Efficiency Metrics¶
graph LR
subgraph "Memory Efficiency"
A[Context Compression]
B[Quantum Encoding]
C[Smart Pruning]
D[Adaptive Storage]
end
subgraph "Retrieval Speed"
E[Quantum Search]
F[Parallel Processing]
G[Intelligent Caching]
H[Prediction Models]
end
subgraph "Quality Metrics"
I[Relevance Score]
J[Coherence Measure]
K[Completeness Index]
L[Accuracy Rating]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
Context Optimization¶
class ContextOptimizer:
def __init__(self, context_manager):
self.context_manager = context_manager
self.optimization_algorithms = {
"compression": QuantumCompressionOptimizer(),
"retrieval": RetrievalOptimizer(),
"relevance": RelevanceOptimizer(),
"memory": MemoryOptimizer()
}
async def optimize_context_system(self):
"""Comprehensive context system optimization."""
optimizations = {}
# Optimize each component
for component, optimizer in self.optimization_algorithms.items():
optimization_result = await optimizer.optimize(
self.context_manager
)
optimizations[component] = optimization_result
# Apply optimizations
await self.apply_optimizations(optimizations)
# Measure improvement
improvement_metrics = await self.measure_improvements()
return improvement_metrics
async def real_time_optimization(self):
"""Continuous real-time optimization."""
while True:
# Monitor performance
current_metrics = await self.context_manager.get_performance_metrics()
# Identify optimization opportunities
opportunities = await self.identify_optimization_opportunities(
current_metrics
)
# Apply micro-optimizations
for opportunity in opportunities:
await self.apply_micro_optimization(opportunity)
# Wait before next optimization cycle
await asyncio.sleep(30) # 30-second intervals
🔒 License Integration¶
Context Management Restrictions¶
graph LR
subgraph "License Tiers"
A[Basic - 1K Context]
B[Professional - 10K Context]
C[Enterprise - 100K+ Context]
D[Research - Unlimited]
end
subgraph "Features"
E[Basic Management]
F[Quantum Processing]
G[Multi-Modal Support]
H[Advanced Analytics]
end
A --> E
B --> F
C --> G
D --> H
License Enforcement¶
from quantumlangchain.licensing import requires_license
class QuantumContextManager(LicensedComponent):
@requires_license(tier="basic")
def __init__(self, **kwargs):
"""Initialize with license validation."""
super().__init__(
required_features=["context_management"],
required_tier="basic"
)
# Validate context limits
max_context = self._get_max_context_size()
requested_context = kwargs.get("max_context_length", 1000)
if requested_context > max_context:
raise LicenseError(
f"Context limit exceeded. "
f"License allows {max_context} tokens, "
f"requested {requested_context}. "
f"Contact: bajpaikrishna715@gmail.com"
)
@requires_license(tier="professional")
def enable_quantum_processing(self):
"""Enable quantum context processing (Professional+ only)."""
pass
@requires_license(tier="enterprise")
def enable_multimodal_context(self):
"""Enable multi-modal context support (Enterprise+ only)."""
pass
📚 API Reference¶
Core Context Classes¶
class QuantumContextManager:
def __init__(self, max_context_length=1000, quantum_compression=True, **config):
"""Initialize quantum context manager."""
async def add_context(self, content: str, context_type: str = "general", **metadata) -> None:
"""Add context information."""
async def get_relevant_context(self, query: str, max_items: int = 5, **kwargs) -> List[Context]:
"""Retrieve relevant context for a query."""
async def update_context(self, context_id: str, new_content: str) -> None:
"""Update existing context."""
async def remove_context(self, context_id: str) -> None:
"""Remove context by ID."""
def get_context_stats(self) -> Dict[str, Any]:
"""Get context management statistics."""
class Context:
def __init__(self, content: str, context_type: str, importance: float = 0.5, **metadata):
"""Initialize context object."""
def to_dict(self) -> Dict[str, Any]:
"""Convert context to dictionary."""
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> 'Context':
"""Create context from dictionary."""
🔮 Future Enhancements¶
Planned Context Features¶
graph TB
subgraph "Near Future"
A[Better Compression]
B[Faster Retrieval]
C[Enhanced Relevance]
D[Improved Memory]
end
subgraph "Medium Term"
E[Self-Managing Context]
F[Predictive Context]
G[Quantum Context Networks]
H[Adaptive Learning]
end
subgraph "Long Term"
I[Conscious Context]
J[Universal Context Interface]
K[Quantum Context Evolution]
L[AGI-Level Understanding]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
🔐 License Requirements¶
- Basic Context: Basic license tier (up to 1K context tokens)
- Professional Context: Professional license tier (up to 10K context tokens)
- Enterprise Context: Enterprise license tier (100K+ context tokens)
- Research Context: Research license tier (unlimited context)
Contact bajpaikrishna715@gmail.com for licensing.
Context Manager provides quantum-enhanced context understanding and management capabilities for intelligent AI applications.