Skip to content

πŸš€ Getting Started with QuantumLangChainΒΆ

πŸ” Licensed Component - Contact: bajpaikrishna715@gmail.com for licensing

Quick Start GuideΒΆ

Welcome to QuantumLangChain! This guide will help you get started with quantum-enhanced AI applications in just a few minutes.

πŸ“‹ PrerequisitesΒΆ

Before you begin, ensure you have:

  • Python 3.8 or higher
  • Valid QuantumLangChain license
  • Quantum backend (Qiskit, PennyLane, or Braket)
  • Basic understanding of quantum computing concepts

πŸ› οΈ InstallationΒΆ

# Install QuantumLangChain
pip install quantumlangchain

# Install quantum backends
pip install qiskit qiskit-aer
pip install pennylane
pip install amazon-braket-sdk

# Optional: Install additional dependencies
pip install numpy scipy matplotlib

πŸ”‘ License SetupΒΆ

Before using QuantumLangChain, you need to set up your license:

from quantumlangchain.licensing import setup_license

# Setup license (one-time configuration)
setup_license(
    license_key="your-license-key-here",
    contact_email="bajpaikrishna715@gmail.com"
)

If you don't have a license, the system will provide a 24-hour grace period. Contact bajpaikrishna715@gmail.com with your machine ID to obtain a license.

🎯 Your First Quantum Chain¢

Let's create your first quantum-enhanced AI application:

Basic ExampleΒΆ

import asyncio
from quantumlangchain import QLChain

async def basic_example():
    # Initialize quantum chain
    chain = QLChain(
        backend="qiskit",
        quantum_dim=4,
        classical_dim=512,
        temperature=0.7
    )

    # Ask a question
    response = await chain.arun(
        "Explain quantum superposition in simple terms"
    )

    print(response)

# Run the example
asyncio.run(basic_example())

Enhanced Example with MemoryΒΆ

from quantumlangchain import QLChain
from quantumlangchain.memory import QuantumMemory

async def memory_example():
    # Create quantum memory
    memory = QuantumMemory(
        classical_dim=1024,
        quantum_dim=8,
        decoherence_rate=0.01
    )

    # Initialize chain with memory
    chain = QLChain(
        backend="qiskit",
        quantum_dim=8,
        classical_dim=1024,
        memory=memory,
        entanglement_strength=0.8
    )

    # Multi-turn conversation
    response1 = await chain.arun("What is quantum entanglement?")
    print("Q1:", response1)

    response2 = await chain.arun("How is it used in quantum computing?")
    print("Q2:", response2)

    response3 = await chain.arun("Can you give me a practical example?")
    print("Q3:", response3)

asyncio.run(memory_example())

πŸ—οΈ Architecture OverviewΒΆ

graph TB
    subgraph "Application Layer"
        A[Your Application]
        B[QLChain Interface]
        C[Quantum Prompts]
        D[Response Processing]
    end

    subgraph "QuantumLangChain Core"
        E[Quantum Processors]
        F[Classical Integration]
        G[Memory Systems]
        H[Agent Networks]
    end

    subgraph "Quantum Backends"
        I[Qiskit]
        J[PennyLane]
        K[Braket]
        L[Custom Backends]
    end

    subgraph "Infrastructure"
        M[License Manager]
        N[Error Handling]
        O[Performance Monitor]
        P[Security Layer]
    end

    A --> B
    B --> C
    C --> D

    B --> E
    E --> F
    F --> G
    G --> H

    E --> I
    F --> J
    G --> K
    H --> L

    I --> M
    J --> N
    K --> O
    L --> P

πŸ“š Core ConceptsΒΆ

Quantum-Enhanced ReasoningΒΆ

QuantumLangChain uses quantum computing principles to enhance AI reasoning:

  • Superposition: Process multiple reasoning paths simultaneously
  • Entanglement: Create non-local correlations between concepts
  • Interference: Amplify correct solutions and cancel incorrect ones
  • Measurement: Extract final answers from quantum states

Key ComponentsΒΆ

graph LR
    subgraph "Core Components"
        A[QLChain]
        B[Quantum Memory]
        C[Entangled Agents]
        D[Vector Stores]
    end

    subgraph "Capabilities"
        E[Enhanced Reasoning]
        F[Quantum Memory]
        G[Multi-Agent Coordination]
        H[Semantic Search]
    end

    A --> E
    B --> F
    C --> G
    D --> H

🎨 Common Use Cases¢

1. Enhanced Question AnsweringΒΆ

from quantumlangchain import QLChain

async def qa_system():
    chain = QLChain(
        backend="qiskit",
        quantum_dim=6,
        reasoning_depth=3
    )

    # Complex reasoning question
    question = """
    Given the uncertainty principle and quantum tunneling,
    how might quantum effects influence consciousness?
    """

    answer = await chain.arun(question)
    return answer

2. Creative Content GenerationΒΆ

from quantumlangchain import QLChain

async def creative_writing():
    chain = QLChain(
        backend="pennylane",
        quantum_dim=8,
        creativity_boost=0.9,
        temperature=0.8
    )

    prompt = "Write a story about quantum computers achieving consciousness"
    story = await chain.arun(prompt)
    return story

3. Multi-Agent Problem SolvingΒΆ

from quantumlangchain.agents import EntangledAgent, AgentNetwork

async def multi_agent_research():
    # Create specialized agents
    physicist = EntangledAgent(
        role="physicist",
        specialization="quantum_mechanics"
    )

    computer_scientist = EntangledAgent(
        role="computer_scientist",
        specialization="quantum_computing"
    )

    # Create entangled network
    network = AgentNetwork([physicist, computer_scientist])
    await network.entangle_agents()

    # Collaborative problem solving
    problem = "Design a quantum algorithm for protein folding"
    solution = await network.collaborative_solve(problem)
    return solution

4. Retrieval-Augmented GenerationΒΆ

from quantumlangchain.chains import RAGQuantumChain
from quantumlangchain.vectorstores import QuantumVectorStore

async def rag_system():
    # Setup quantum vector store
    vectorstore = QuantumVectorStore(
        quantum_search=True,
        dimension=768
    )

    # Add knowledge base
    documents = [
        "Quantum computing principles and applications",
        "Machine learning and artificial intelligence",
        # ... more documents
    ]
    await vectorstore.aadd_texts(documents)

    # Create RAG chain
    rag_chain = RAGQuantumChain(vectorstore=vectorstore)

    # Enhanced Q&A with retrieval
    answer = await rag_chain.arun(
        "How can quantum computing accelerate machine learning?"
    )
    return answer

βš™οΈ Configuration GuideΒΆ

Backend ConfigurationΒΆ

# Qiskit Configuration
qiskit_config = {
    "backend": "qiskit",
    "backend_name": "qasm_simulator",
    "shots": 1024,
    "optimization_level": 2,
    "noise_model": None
}

# PennyLane Configuration
pennylane_config = {
    "backend": "pennylane",
    "device": "default.qubit",
    "shots": 1000,
    "interface": "autograd"
}

# Braket Configuration
braket_config = {
    "backend": "braket",
    "device": "arn:aws:braket::device/quantum-simulator/amazon/sv1",
    "s3_folder": ("amazon-braket-bucket", "folder")
}

Memory ConfigurationΒΆ

memory_configs = {
    "basic": {
        "classical_dim": 512,
        "quantum_dim": 4,
        "decoherence_rate": 0.1
    },
    "advanced": {
        "classical_dim": 1024,
        "quantum_dim": 8,
        "decoherence_rate": 0.01,
        "error_correction": True
    }
}

🚦 Best Practices¢

1. Start SimpleΒΆ

Begin with basic quantum dimensions (4-8 qubits) and gradually increase complexity:

# Good: Start simple
chain = QLChain(quantum_dim=4)

# Better: Gradually increase
chain = QLChain(quantum_dim=8, error_correction=True)

2. Handle Errors GracefullyΒΆ

Always implement proper error handling:

from quantumlangchain.exceptions import QuantumError, LicenseError

try:
    chain = QLChain(quantum_dim=16)
    result = await chain.arun("Your question")
except LicenseError as e:
    print(f"License issue: {e}")
    print("Contact: bajpaikrishna715@gmail.com")
except QuantumError as e:
    print(f"Quantum processing error: {e}")

3. Optimize PerformanceΒΆ

Use appropriate configurations for your use case:

# For fast responses
fast_chain = QLChain(
    quantum_dim=4,
    optimization_level=0,
    shots=256
)

# For high accuracy
accurate_chain = QLChain(
    quantum_dim=8,
    optimization_level=3,
    shots=2048,
    error_correction=True
)

4. Monitor Resource UsageΒΆ

from quantumlangchain.monitoring import PerformanceMonitor

monitor = PerformanceMonitor()

async def monitored_execution():
    with monitor.track("quantum_reasoning"):
        result = await chain.arun("Complex question")

    # Check performance metrics
    metrics = monitor.get_metrics()
    print(f"Execution time: {metrics['execution_time']}")
    print(f"Quantum operations: {metrics['quantum_ops']}")

πŸ”§ TroubleshootingΒΆ

Common IssuesΒΆ

License ErrorsΒΆ

# Error: License not found or expired
# Solution: Contact bajpaikrishna715@gmail.com with your machine ID

from quantumlangchain.licensing import get_machine_id
print(f"Machine ID: {get_machine_id()}")

Backend ErrorsΒΆ

# Error: Quantum backend not available
# Solution: Install required backend

# For Qiskit
pip install qiskit qiskit-aer

# For PennyLane
pip install pennylane

# For Braket
pip install amazon-braket-sdk

Memory ErrorsΒΆ

# Error: Insufficient quantum memory
# Solution: Reduce quantum dimensions or upgrade license

chain = QLChain(
    quantum_dim=4,  # Reduce from higher value
    memory_optimization=True
)

Debug ModeΒΆ

Enable debug mode for detailed information:

import logging
logging.basicConfig(level=logging.DEBUG)

from quantumlangchain import QLChain
chain = QLChain(debug=True)

πŸ“– Next StepsΒΆ

Now that you've completed the getting started guide, explore these areas:

  1. Core Concepts - Deepen your understanding
  2. Theory & Architecture - Learn advanced concepts
  3. API Reference - Explore all available features
  4. Core Modules - See real-world applications

πŸ†˜ SupportΒΆ

Need help? Here are your options:

  • Documentation: Check our comprehensive docs
  • Examples: Browse example applications
  • Community: Join our community discussions
  • License Issues: Contact bajpaikrishna715@gmail.com

πŸ” License InformationΒΆ

QuantumLangChain requires a valid license for operation. Features are gated based on license tier:

  • Basic: Up to 4 qubits, basic features
  • Professional: Up to 8 qubits, advanced features
  • Enterprise: 16+ qubits, enterprise features
  • Research: Unlimited, experimental features

Grace period: 24 hours when license not found. Contact: bajpaikrishna715@gmail.com

Welcome to the future of AI with QuantumLangChain! πŸš€