π Getting Started with QuantumLangChainΒΆ
π Licensed Component - Contact: bajpaikrishna715@gmail.com for licensing
Quick Start GuideΒΆ
Welcome to QuantumLangChain! This guide will help you get started with quantum-enhanced AI applications in just a few minutes.
π PrerequisitesΒΆ
Before you begin, ensure you have:
- Python 3.8 or higher
- Valid QuantumLangChain license
- Quantum backend (Qiskit, PennyLane, or Braket)
- Basic understanding of quantum computing concepts
π οΈ InstallationΒΆ
# Install QuantumLangChain
pip install quantumlangchain
# Install quantum backends
pip install qiskit qiskit-aer
pip install pennylane
pip install amazon-braket-sdk
# Optional: Install additional dependencies
pip install numpy scipy matplotlib
π License SetupΒΆ
Before using QuantumLangChain, you need to set up your license:
from quantumlangchain.licensing import setup_license
# Setup license (one-time configuration)
setup_license(
license_key="your-license-key-here",
contact_email="bajpaikrishna715@gmail.com"
)
If you don't have a license, the system will provide a 24-hour grace period. Contact bajpaikrishna715@gmail.com with your machine ID to obtain a license.
π― Your First Quantum ChainΒΆ
Let's create your first quantum-enhanced AI application:
Basic ExampleΒΆ
import asyncio
from quantumlangchain import QLChain
async def basic_example():
# Initialize quantum chain
chain = QLChain(
backend="qiskit",
quantum_dim=4,
classical_dim=512,
temperature=0.7
)
# Ask a question
response = await chain.arun(
"Explain quantum superposition in simple terms"
)
print(response)
# Run the example
asyncio.run(basic_example())
Enhanced Example with MemoryΒΆ
from quantumlangchain import QLChain
from quantumlangchain.memory import QuantumMemory
async def memory_example():
# Create quantum memory
memory = QuantumMemory(
classical_dim=1024,
quantum_dim=8,
decoherence_rate=0.01
)
# Initialize chain with memory
chain = QLChain(
backend="qiskit",
quantum_dim=8,
classical_dim=1024,
memory=memory,
entanglement_strength=0.8
)
# Multi-turn conversation
response1 = await chain.arun("What is quantum entanglement?")
print("Q1:", response1)
response2 = await chain.arun("How is it used in quantum computing?")
print("Q2:", response2)
response3 = await chain.arun("Can you give me a practical example?")
print("Q3:", response3)
asyncio.run(memory_example())
ποΈ Architecture OverviewΒΆ
graph TB
subgraph "Application Layer"
A[Your Application]
B[QLChain Interface]
C[Quantum Prompts]
D[Response Processing]
end
subgraph "QuantumLangChain Core"
E[Quantum Processors]
F[Classical Integration]
G[Memory Systems]
H[Agent Networks]
end
subgraph "Quantum Backends"
I[Qiskit]
J[PennyLane]
K[Braket]
L[Custom Backends]
end
subgraph "Infrastructure"
M[License Manager]
N[Error Handling]
O[Performance Monitor]
P[Security Layer]
end
A --> B
B --> C
C --> D
B --> E
E --> F
F --> G
G --> H
E --> I
F --> J
G --> K
H --> L
I --> M
J --> N
K --> O
L --> P
π Core ConceptsΒΆ
Quantum-Enhanced ReasoningΒΆ
QuantumLangChain uses quantum computing principles to enhance AI reasoning:
- Superposition: Process multiple reasoning paths simultaneously
- Entanglement: Create non-local correlations between concepts
- Interference: Amplify correct solutions and cancel incorrect ones
- Measurement: Extract final answers from quantum states
Key ComponentsΒΆ
graph LR
subgraph "Core Components"
A[QLChain]
B[Quantum Memory]
C[Entangled Agents]
D[Vector Stores]
end
subgraph "Capabilities"
E[Enhanced Reasoning]
F[Quantum Memory]
G[Multi-Agent Coordination]
H[Semantic Search]
end
A --> E
B --> F
C --> G
D --> H
π¨ Common Use CasesΒΆ
1. Enhanced Question AnsweringΒΆ
from quantumlangchain import QLChain
async def qa_system():
chain = QLChain(
backend="qiskit",
quantum_dim=6,
reasoning_depth=3
)
# Complex reasoning question
question = """
Given the uncertainty principle and quantum tunneling,
how might quantum effects influence consciousness?
"""
answer = await chain.arun(question)
return answer
2. Creative Content GenerationΒΆ
from quantumlangchain import QLChain
async def creative_writing():
chain = QLChain(
backend="pennylane",
quantum_dim=8,
creativity_boost=0.9,
temperature=0.8
)
prompt = "Write a story about quantum computers achieving consciousness"
story = await chain.arun(prompt)
return story
3. Multi-Agent Problem SolvingΒΆ
from quantumlangchain.agents import EntangledAgent, AgentNetwork
async def multi_agent_research():
# Create specialized agents
physicist = EntangledAgent(
role="physicist",
specialization="quantum_mechanics"
)
computer_scientist = EntangledAgent(
role="computer_scientist",
specialization="quantum_computing"
)
# Create entangled network
network = AgentNetwork([physicist, computer_scientist])
await network.entangle_agents()
# Collaborative problem solving
problem = "Design a quantum algorithm for protein folding"
solution = await network.collaborative_solve(problem)
return solution
4. Retrieval-Augmented GenerationΒΆ
from quantumlangchain.chains import RAGQuantumChain
from quantumlangchain.vectorstores import QuantumVectorStore
async def rag_system():
# Setup quantum vector store
vectorstore = QuantumVectorStore(
quantum_search=True,
dimension=768
)
# Add knowledge base
documents = [
"Quantum computing principles and applications",
"Machine learning and artificial intelligence",
# ... more documents
]
await vectorstore.aadd_texts(documents)
# Create RAG chain
rag_chain = RAGQuantumChain(vectorstore=vectorstore)
# Enhanced Q&A with retrieval
answer = await rag_chain.arun(
"How can quantum computing accelerate machine learning?"
)
return answer
βοΈ Configuration GuideΒΆ
Backend ConfigurationΒΆ
# Qiskit Configuration
qiskit_config = {
"backend": "qiskit",
"backend_name": "qasm_simulator",
"shots": 1024,
"optimization_level": 2,
"noise_model": None
}
# PennyLane Configuration
pennylane_config = {
"backend": "pennylane",
"device": "default.qubit",
"shots": 1000,
"interface": "autograd"
}
# Braket Configuration
braket_config = {
"backend": "braket",
"device": "arn:aws:braket::device/quantum-simulator/amazon/sv1",
"s3_folder": ("amazon-braket-bucket", "folder")
}
Memory ConfigurationΒΆ
memory_configs = {
"basic": {
"classical_dim": 512,
"quantum_dim": 4,
"decoherence_rate": 0.1
},
"advanced": {
"classical_dim": 1024,
"quantum_dim": 8,
"decoherence_rate": 0.01,
"error_correction": True
}
}
π¦ Best PracticesΒΆ
1. Start SimpleΒΆ
Begin with basic quantum dimensions (4-8 qubits) and gradually increase complexity:
# Good: Start simple
chain = QLChain(quantum_dim=4)
# Better: Gradually increase
chain = QLChain(quantum_dim=8, error_correction=True)
2. Handle Errors GracefullyΒΆ
Always implement proper error handling:
from quantumlangchain.exceptions import QuantumError, LicenseError
try:
chain = QLChain(quantum_dim=16)
result = await chain.arun("Your question")
except LicenseError as e:
print(f"License issue: {e}")
print("Contact: bajpaikrishna715@gmail.com")
except QuantumError as e:
print(f"Quantum processing error: {e}")
3. Optimize PerformanceΒΆ
Use appropriate configurations for your use case:
# For fast responses
fast_chain = QLChain(
quantum_dim=4,
optimization_level=0,
shots=256
)
# For high accuracy
accurate_chain = QLChain(
quantum_dim=8,
optimization_level=3,
shots=2048,
error_correction=True
)
4. Monitor Resource UsageΒΆ
from quantumlangchain.monitoring import PerformanceMonitor
monitor = PerformanceMonitor()
async def monitored_execution():
with monitor.track("quantum_reasoning"):
result = await chain.arun("Complex question")
# Check performance metrics
metrics = monitor.get_metrics()
print(f"Execution time: {metrics['execution_time']}")
print(f"Quantum operations: {metrics['quantum_ops']}")
π§ TroubleshootingΒΆ
Common IssuesΒΆ
License ErrorsΒΆ
# Error: License not found or expired
# Solution: Contact bajpaikrishna715@gmail.com with your machine ID
from quantumlangchain.licensing import get_machine_id
print(f"Machine ID: {get_machine_id()}")
Backend ErrorsΒΆ
# Error: Quantum backend not available
# Solution: Install required backend
# For Qiskit
pip install qiskit qiskit-aer
# For PennyLane
pip install pennylane
# For Braket
pip install amazon-braket-sdk
Memory ErrorsΒΆ
# Error: Insufficient quantum memory
# Solution: Reduce quantum dimensions or upgrade license
chain = QLChain(
quantum_dim=4, # Reduce from higher value
memory_optimization=True
)
Debug ModeΒΆ
Enable debug mode for detailed information:
import logging
logging.basicConfig(level=logging.DEBUG)
from quantumlangchain import QLChain
chain = QLChain(debug=True)
π Next StepsΒΆ
Now that you've completed the getting started guide, explore these areas:
- Core Concepts - Deepen your understanding
- Theory & Architecture - Learn advanced concepts
- API Reference - Explore all available features
- Core Modules - See real-world applications
π SupportΒΆ
Need help? Here are your options:
- Documentation: Check our comprehensive docs
- Examples: Browse example applications
- Community: Join our community discussions
- License Issues: Contact bajpaikrishna715@gmail.com
π License InformationΒΆ
QuantumLangChain requires a valid license for operation. Features are gated based on license tier:
- Basic: Up to 4 qubits, basic features
- Professional: Up to 8 qubits, advanced features
- Enterprise: 16+ qubits, enterprise features
- Research: Unlimited, experimental features
Grace period: 24 hours when license not found. Contact: bajpaikrishna715@gmail.com
Welcome to the future of AI with QuantumLangChain! π