β‘ Performance OptimizationΒΆ
π Licensed Component - Contact: bajpaikrishna715@gmail.com for licensing
π― Performance OverviewΒΆ
QuantumLangChain is designed for optimal performance across quantum and classical computing paradigms.
π Quantum Performance OptimizationΒΆ
Circuit OptimizationΒΆ
graph TD
A[Raw Quantum Circuit] --> B[Gate Optimization]
B --> C[Depth Reduction]
C --> D[Parallelization]
D --> E[Hardware Mapping]
E --> F[Optimized Circuit]
subgraph "Optimization Techniques"
G[Gate Fusion]
H[Circuit Compilation]
I[Error Mitigation]
J[Resource Estimation]
end
B --> G
C --> H
D --> I
E --> J
Memory OptimizationΒΆ
# Quantum memory optimization strategies
from quantum_langchain.optimization import QuantumOptimizer
optimizer = QuantumOptimizer()
# Circuit depth optimization
optimized_circuit = optimizer.optimize_depth(circuit)
# Memory usage optimization
memory_config = optimizer.optimize_memory_usage(
max_qubits=50,
memory_limit="8GB"
)
# Parallel execution optimization
parallel_config = optimizer.optimize_parallel_execution(
num_backends=4,
load_balancing=True
)
π§ Classical Performance TuningΒΆ
LLM Integration OptimizationΒΆ
# Efficient LLM integration
from quantum_langchain.optimization import LLMOptimizer
llm_optimizer = LLMOptimizer()
# Batch processing
batch_config = llm_optimizer.configure_batching(
batch_size=32,
max_tokens=2048
)
# Caching strategies
cache_config = llm_optimizer.setup_caching(
cache_type="redis",
ttl=3600
)
Memory ManagementΒΆ
# Memory-efficient processing
from quantum_langchain.memory import MemoryManager
memory_manager = MemoryManager()
# Configure memory pools
memory_manager.configure_pools(
quantum_pool_size="2GB",
classical_pool_size="4GB",
shared_pool_size="1GB"
)
# Garbage collection optimization
memory_manager.optimize_gc(
strategy="generational",
quantum_aware=True
)
π Performance BenchmarksΒΆ
Quantum OperationsΒΆ
Operation | Qubits | Classical Time | Quantum Time | Speedup |
---|---|---|---|---|
Search | 10 | 1.2s | 0.3s | 4x |
Search | 20 | 12.5s | 0.8s | 15.6x |
Optimization | 15 | 45.2s | 2.1s | 21.5x |
Memory Retrieval | 25 | 8.7s | 0.4s | 21.8x |
Memory PerformanceΒΆ
# Memory performance benchmarks
from quantum_langchain.benchmarks import MemoryBenchmark
benchmark = MemoryBenchmark()
# Test memory scalability
results = benchmark.test_scalability(
data_sizes=[1000, 10000, 100000],
operations=["store", "retrieve", "search"]
)
# Expected results:
# - Linear scaling for storage
# - Logarithmic scaling for retrieval
# - Constant time for quantum search
π οΈ Optimization StrategiesΒΆ
Quantum Circuit OptimizationΒΆ
# Advanced circuit optimization
from quantum_langchain.circuits import CircuitOptimizer
optimizer = CircuitOptimizer()
# Multi-level optimization
optimized = optimizer.optimize(
circuit=quantum_circuit,
levels=[
"gate_fusion",
"redundancy_removal",
"depth_reduction",
"hardware_mapping"
]
)
# Noise-aware optimization
noise_optimized = optimizer.optimize_for_noise(
circuit=quantum_circuit,
noise_model=device_noise_model,
fidelity_threshold=0.95
)
Parallel ProcessingΒΆ
# Quantum-classical parallel processing
from quantum_langchain.parallel import ParallelProcessor
processor = ParallelProcessor()
# Configure parallel execution
processor.configure(
quantum_workers=4,
classical_workers=8,
hybrid_coordination=True
)
# Execute parallel workflows
results = processor.execute_parallel([
quantum_task_1,
quantum_task_2,
classical_task_1,
classical_task_2
])
Caching StrategiesΒΆ
# Multi-level caching
from quantum_langchain.cache import QuantumCache
cache = QuantumCache()
# Configure cache hierarchy
cache.configure_hierarchy([
("L1", "memory", "100MB"),
("L2", "redis", "1GB"),
("L3", "disk", "10GB")
])
# Quantum state caching
@cache.quantum_state_cache(ttl=3600)
def expensive_quantum_computation(params):
return quantum_algorithm(params)
π Monitoring and ProfilingΒΆ
Performance MonitoringΒΆ
# Real-time performance monitoring
from quantum_langchain.monitoring import PerformanceMonitor
monitor = PerformanceMonitor()
# Setup metrics collection
monitor.track_metrics([
"quantum_execution_time",
"classical_processing_time",
"memory_usage",
"cache_hit_rate",
"error_rate"
])
# Performance alerts
monitor.set_alerts(
quantum_time_threshold="5s",
memory_threshold="80%",
error_rate_threshold="5%"
)
Profiling ToolsΒΆ
# Quantum profiling
from quantum_langchain.profiling import QuantumProfiler
profiler = QuantumProfiler()
# Profile quantum operations
with profiler.profile("quantum_memory_search"):
result = quantum_memory.search(query)
# Generate performance report
report = profiler.generate_report()
print(report.summary())
ποΈ Configuration TuningΒΆ
Backend ConfigurationΒΆ
# Optimize backend selection
from quantum_langchain.backends import BackendOptimizer
optimizer = BackendOptimizer()
# Auto-select optimal backend
optimal_backend = optimizer.select_backend(
task_type="quantum_search",
data_size=10000,
latency_requirement="low",
accuracy_requirement="high"
)
Resource AllocationΒΆ
# Dynamic resource allocation
from quantum_langchain.resources import ResourceManager
manager = ResourceManager()
# Configure adaptive allocation
manager.configure_adaptive_allocation(
quantum_resource_pool=0.6,
classical_resource_pool=0.3,
shared_resource_pool=0.1,
auto_scaling=True
)
π Performance AnalysisΒΆ
Bottleneck IdentificationΒΆ
# Performance bottleneck analysis
from quantum_langchain.analysis import BottleneckAnalyzer
analyzer = BottleneckAnalyzer()
# Analyze system performance
bottlenecks = analyzer.identify_bottlenecks(
trace_data=performance_trace,
threshold=0.1 # 10% impact threshold
)
# Generate optimization recommendations
recommendations = analyzer.generate_recommendations(bottlenecks)
A/B TestingΒΆ
# Performance A/B testing
from quantum_langchain.testing import PerformanceABTest
ab_test = PerformanceABTest()
# Test optimization strategies
results = ab_test.run_test(
strategy_a="classical_optimization",
strategy_b="quantum_optimization",
test_duration="1hour",
traffic_split=0.5
)
π― Best PracticesΒΆ
Quantum Optimization Best PracticesΒΆ
- Circuit Design
- Minimize circuit depth
- Use native gate sets
-
Implement error mitigation
-
Memory Management
- Use quantum memory pools
- Implement lazy loading
-
Optimize state preparation
-
Backend Selection
- Match algorithm to hardware
- Consider noise models
- Use simulators for development
Classical Optimization Best PracticesΒΆ
- LLM Integration
- Batch similar requests
- Use prompt caching
-
Optimize token usage
-
Data Processing
- Implement streaming processing
- Use vectorized operations
-
Minimize data movement
-
System Architecture
- Use async/await patterns
- Implement connection pooling
- Monitor resource usage
π Performance MetricsΒΆ
Key Performance IndicatorsΒΆ
- Quantum Execution Time: < 2s for typical operations
- Memory Retrieval Time: < 100ms for quantum search
- Cache Hit Rate: > 80% for frequent operations
- System Throughput: > 1000 operations/second
- Resource Utilization: 70-85% optimal range
Monitoring DashboardΒΆ
# Performance dashboard setup
from quantum_langchain.dashboard import PerformanceDashboard
dashboard = PerformanceDashboard()
# Configure real-time metrics
dashboard.add_metrics([
"quantum_operations_per_second",
"average_response_time",
"memory_usage_percentage",
"error_rate",
"quantum_advantage_ratio"
])
# Launch dashboard
dashboard.start(port=8080)
π License RequirementsΒΆ
Performance optimization features require Professional licensing. Contact bajpaikrishna715@gmail.com for licensing.
π License Notice: Advanced performance features require appropriate licensing tiers. Contact bajpaikrishna715@gmail.com for access.