Best Practices¶
Guidelines and best practices for developing quantum-classical hybrid AI applications with QuantumLangChain.
Table of Contents¶
- Quantum State Management
- Performance Optimization
- Error Handling and Resilience
- Resource Management
- Security Considerations
- Testing and Validation
- Deployment Strategies
- Monitoring and Observability
Quantum State Management¶
Coherence Preservation¶
Do:
# Monitor quantum coherence levels
async def check_coherence(component):
if component.decoherence_level > 0.3:
await component.reset_quantum_state()
logger.warning("Quantum state reset due to decoherence")
# Use appropriate decoherence thresholds
config = QuantumConfig(
decoherence_threshold=0.1, # Strict for critical operations
enable_error_correction=True
)
# Implement coherence monitoring
class CoherenceMonitor:
def __init__(self, threshold=0.2):
self.threshold = threshold
async def monitor_chain(self, chain):
stats = await chain.get_execution_stats()
if stats['avg_coherence'] < self.threshold:
await self.handle_decoherence(chain)
Don't:
# Don't ignore decoherence warnings
# ❌ Bad
result = await chain.arun(query) # No coherence checking
# Don't use overly complex quantum operations unnecessarily
# ❌ Bad
chain = QLChain(
config={'max_parallel_branches': 50} # Too many branches
)
# Don't forget to reset quantum states after errors
# ❌ Bad
try:
result = await quantum_operation()
except QuantumDecoherenceError:
pass # No state reset
Entanglement Management¶
Best Practices:
class EntanglementManager:
def __init__(self):
self.active_entanglements = {}
self.entanglement_registry = {}
async def create_strategic_entanglement(self, components, purpose):
"""Create entanglement with clear purpose and tracking."""
entanglement_id = await self.entangle_components(
components=components,
strength=self.calculate_optimal_strength(purpose),
purpose=purpose
)
self.track_entanglement(entanglement_id, components, purpose)
return entanglement_id
async def cleanup_expired_entanglements(self):
"""Regular cleanup of weak or purposeless entanglements."""
for ent_id, info in list(self.active_entanglements.items()):
if info['strength'] < 0.3 or info['age'] > info['max_age']:
await self.dissolve_entanglement(ent_id)
def calculate_optimal_strength(self, purpose):
"""Calculate entanglement strength based on purpose."""
strength_map = {
'memory_coherence': 0.9,
'agent_collaboration': 0.8,
'context_sharing': 0.7,
'tool_coordination': 0.6
}
return strength_map.get(purpose, 0.5)
State Transitions¶
Recommended Pattern:
async def safe_quantum_transition(component, target_state):
"""Safely transition quantum states with validation."""
# 1. Validate current state
current_state = component.quantum_state
if not is_valid_transition(current_state, target_state):
raise InvalidQuantumTransitionError(
f"Cannot transition from {current_state} to {target_state}"
)
# 2. Create checkpoint
checkpoint = await component.create_state_checkpoint()
try:
# 3. Perform transition
await component.transition_to_state(target_state)
# 4. Validate new state
if not await component.validate_quantum_state():
raise QuantumStateValidationError("Invalid state after transition")
except Exception as e:
# 5. Rollback on failure
await component.restore_from_checkpoint(checkpoint)
logger.error(f"Quantum transition failed, rolled back: {e}")
raise
# 6. Cleanup checkpoint
await component.cleanup_checkpoint(checkpoint)
Performance Optimization¶
Circuit Optimization¶
Efficient Circuit Design:
class OptimizedQuantumBackend:
def __init__(self, config):
self.config = config
self.circuit_cache = {}
self.optimization_level = config.optimization_level
async def create_optimized_circuit(self, operation_type, qubits):
"""Create optimized quantum circuits with caching."""
# Check cache first
cache_key = f"{operation_type}_{len(qubits)}_{hash(tuple(qubits))}"
if cache_key in self.circuit_cache:
return self.circuit_cache[cache_key].copy()
# Create circuit
circuit = self.build_circuit(operation_type, qubits)
# Apply optimizations
circuit = await self.optimize_circuit(circuit)
# Cache for reuse
self.circuit_cache[cache_key] = circuit.copy()
return circuit
async def optimize_circuit(self, circuit):
"""Apply quantum circuit optimizations."""
# 1. Gate consolidation
circuit = self.consolidate_gates(circuit)
# 2. Depth reduction
circuit = self.reduce_depth(circuit)
# 3. Error mitigation
if self.config.enable_error_correction:
circuit = self.add_error_correction(circuit)
return circuit
def calculate_optimal_shots(self, circuit_depth, target_accuracy=0.95):
"""Calculate optimal number of shots for given accuracy."""
base_shots = 1000
depth_factor = min(circuit_depth / 10, 3.0) # Cap at 3x
accuracy_factor = (1 / (1 - target_accuracy)) ** 2
return int(base_shots * depth_factor * accuracy_factor)
Memory Optimization¶
Memory-Efficient Patterns:
class OptimizedQuantumMemory:
def __init__(self, config):
self.config = config
self.memory_pool = MemoryPool(config.max_memory)
self.compression_enabled = config.enable_compression
async def store_with_optimization(self, key, value, metadata=None):
"""Store data with automatic optimization."""
# 1. Compress large values
if self.should_compress(value):
value = await self.compress_value(value)
metadata = metadata or {}
metadata['compressed'] = True
# 2. Check memory pressure
if await self.memory_pool.usage_ratio() > 0.8:
await self.perform_cleanup()
# 3. Store with expiration
expiration = self.calculate_expiration(value, metadata)
await self.memory_pool.store(key, value, metadata, expiration)
async def perform_cleanup(self):
"""Intelligent memory cleanup."""
# 1. Remove expired entries
await self.memory_pool.cleanup_expired()
# 2. Compress old entries
await self.memory_pool.compress_old_entries(age_threshold=3600)
# 3. Remove low-priority entries if still under pressure
if await self.memory_pool.usage_ratio() > 0.9:
await self.memory_pool.evict_low_priority(target_ratio=0.7)
def should_compress(self, value):
"""Determine if value should be compressed."""
if isinstance(value, str):
return len(value) > 1024
elif isinstance(value, (list, dict)):
return len(str(value)) > 2048
return False
Parallel Execution¶
Optimal Parallelization:
class ParallelExecutionManager:
def __init__(self, max_workers=None):
self.max_workers = max_workers or cpu_count()
self.quantum_semaphore = asyncio.Semaphore(4) # Limit quantum ops
async def execute_parallel_chains(self, queries, chain_configs):
"""Execute multiple chains in parallel with resource management."""
# Group by complexity
simple_queries = []
complex_queries = []
for query, config in zip(queries, chain_configs):
if self.estimate_complexity(query, config) > 0.7:
complex_queries.append((query, config))
else:
simple_queries.append((query, config))
# Execute with different strategies
tasks = []
# Simple queries: high parallelism
for query, config in simple_queries:
task = self.execute_simple_chain(query, config)
tasks.append(task)
# Complex queries: limited parallelism
for query, config in complex_queries:
task = self.execute_complex_chain(query, config)
tasks.append(task)
# Execute all tasks
results = await asyncio.gather(*tasks, return_exceptions=True)
return self.process_results(results)
async def execute_complex_chain(self, query, config):
"""Execute complex chain with quantum resource limits."""
async with self.quantum_semaphore:
return await self.create_chain(config).arun(query)
async def execute_simple_chain(self, query, config):
"""Execute simple chain without quantum limitations."""
return await self.create_chain(config).arun(query, quantum_enhanced=False)
Error Handling and Resilience¶
Quantum Error Handling¶
Comprehensive Error Handling:
class QuantumErrorHandler:
def __init__(self):
self.error_patterns = {
QuantumDecoherenceError: self.handle_decoherence,
QuantumBackendError: self.handle_backend_error,
EntanglementBreakError: self.handle_entanglement_break,
CircuitExecutionError: self.handle_circuit_error
}
self.fallback_strategies = {}
async def execute_with_resilience(self, operation, *args, **kwargs):
"""Execute operation with automatic error handling and retry."""
max_retries = kwargs.pop('max_retries', 3)
fallback_enabled = kwargs.pop('enable_fallback', True)
for attempt in range(max_retries + 1):
try:
return await operation(*args, **kwargs)
except tuple(self.error_patterns.keys()) as e:
logger.warning(f"Quantum error on attempt {attempt + 1}: {e}")
# Handle specific error type
handler = self.error_patterns[type(e)]
recovery_action = await handler(e, attempt)
if recovery_action == RecoveryAction.RETRY:
if attempt < max_retries:
await asyncio.sleep(2 ** attempt) # Exponential backoff
continue
elif recovery_action == RecoveryAction.FALLBACK:
if fallback_enabled:
return await self.execute_fallback(operation, *args, **kwargs)
elif recovery_action == RecoveryAction.ABORT:
break
# If we reach here, re-raise the exception
if attempt == max_retries:
raise
except Exception as e:
# Unexpected error
logger.error(f"Unexpected error in quantum operation: {e}")
if attempt == max_retries:
raise
async def handle_decoherence(self, error, attempt):
"""Handle quantum decoherence errors."""
if attempt < 2:
# Try to restore coherence
await self.reset_quantum_components()
return RecoveryAction.RETRY
else:
# Fall back to classical processing
return RecoveryAction.FALLBACK
async def handle_backend_error(self, error, attempt):
"""Handle quantum backend errors."""
if "connection" in str(error).lower():
# Connection issue - retry
return RecoveryAction.RETRY
elif "hardware" in str(error).lower():
# Hardware issue - switch backend
await self.switch_quantum_backend()
return RecoveryAction.RETRY
else:
# Unknown backend error - fallback
return RecoveryAction.FALLBACK
Circuit Breaker Pattern¶
Implementation:
class QuantumCircuitBreaker:
def __init__(self, failure_threshold=5, recovery_timeout=60):
self.failure_threshold = failure_threshold
self.recovery_timeout = recovery_timeout
self.failure_count = 0
self.last_failure_time = None
self.state = CircuitState.CLOSED
async def execute(self, operation, *args, **kwargs):
"""Execute operation with circuit breaker protection."""
if self.state == CircuitState.OPEN:
if await self.should_attempt_reset():
self.state = CircuitState.HALF_OPEN
else:
raise CircuitBreakerOpenError("Circuit breaker is open")
try:
result = await operation(*args, **kwargs)
await self.on_success()
return result
except Exception as e:
await self.on_failure(e)
raise
async def on_success(self):
"""Handle successful operation."""
self.failure_count = 0
if self.state == CircuitState.HALF_OPEN:
self.state = CircuitState.CLOSED
logger.info("Circuit breaker reset to CLOSED state")
async def on_failure(self, error):
"""Handle failed operation."""
self.failure_count += 1
self.last_failure_time = time.time()
if self.failure_count >= self.failure_threshold:
self.state = CircuitState.OPEN
logger.warning(f"Circuit breaker opened after {self.failure_count} failures")
Resource Management¶
Memory Management¶
Memory Monitoring:
class QuantumResourceManager:
def __init__(self, config):
self.config = config
self.memory_monitor = MemoryMonitor()
self.quantum_resource_pool = QuantumResourcePool(config)
async def allocate_quantum_resources(self, operation_type, required_qubits):
"""Allocate quantum resources with monitoring."""
# Check resource availability
if not await self.quantum_resource_pool.has_capacity(required_qubits):
await self.cleanup_idle_resources()
if not await self.quantum_resource_pool.has_capacity(required_qubits):
raise InsufficientQuantumResourcesError(
f"Cannot allocate {required_qubits} qubits"
)
# Allocate resources
resource_id = await self.quantum_resource_pool.allocate(
operation_type=operation_type,
qubits=required_qubits,
timeout=self.config.allocation_timeout
)
# Setup automatic cleanup
asyncio.create_task(
self.auto_cleanup_resource(resource_id, self.config.max_resource_age)
)
return resource_id
async def cleanup_idle_resources(self):
"""Clean up idle quantum resources."""
idle_resources = await self.quantum_resource_pool.get_idle_resources()
for resource_id in idle_resources:
await self.quantum_resource_pool.deallocate(resource_id)
logger.debug(f"Cleaned up idle resource: {resource_id}")
async def monitor_memory_usage(self):
"""Continuous memory monitoring."""
while True:
try:
usage = await self.memory_monitor.get_usage()
if usage.quantum_memory > 0.8:
logger.warning("High quantum memory usage")
await self.perform_quantum_memory_cleanup()
if usage.classical_memory > 0.9:
logger.warning("High classical memory usage")
await self.perform_classical_memory_cleanup()
await asyncio.sleep(30) # Check every 30 seconds
except Exception as e:
logger.error(f"Memory monitoring error: {e}")
await asyncio.sleep(60) # Longer delay on error
Connection Pooling¶
Quantum Backend Pooling:
class QuantumBackendPool:
def __init__(self, config):
self.config = config
self.pools = {}
self.health_checker = BackendHealthChecker()
async def get_backend(self, backend_type, operation_complexity="medium"):
"""Get backend from pool based on operation requirements."""
pool_key = f"{backend_type}_{operation_complexity}"
if pool_key not in self.pools:
self.pools[pool_key] = await self.create_pool(backend_type, operation_complexity)
pool = self.pools[pool_key]
backend = await pool.acquire()
# Health check
if not await self.health_checker.is_healthy(backend):
await pool.release(backend, discard=True)
backend = await self.create_fresh_backend(backend_type)
return PooledBackend(backend, pool)
async def create_pool(self, backend_type, complexity):
"""Create connection pool for backend type."""
pool_size = self.calculate_pool_size(backend_type, complexity)
pool = ConnectionPool(
create_connection=lambda: self.create_backend(backend_type),
max_size=pool_size,
min_size=max(1, pool_size // 4),
health_check=self.health_checker.is_healthy
)
await pool.initialize()
return pool
def calculate_pool_size(self, backend_type, complexity):
"""Calculate optimal pool size."""
base_sizes = {
'qiskit': 4,
'pennylane': 6,
'braket': 3
}
complexity_multipliers = {
'simple': 0.5,
'medium': 1.0,
'complex': 1.5
}
base_size = base_sizes.get(backend_type, 4)
multiplier = complexity_multipliers.get(complexity, 1.0)
return max(1, int(base_size * multiplier))
Security Considerations¶
Quantum-Safe Practices¶
Secure Quantum Operations:
class QuantumSecurityManager:
def __init__(self):
self.encryption_keys = {}
self.access_controls = {}
self.audit_logger = AuditLogger()
async def execute_secure_quantum_operation(self, operation, user_context, *args, **kwargs):
"""Execute quantum operation with security controls."""
# 1. Authentication and authorization
await self.verify_access(user_context, operation)
# 2. Input validation and sanitization
sanitized_args = await self.sanitize_inputs(args)
sanitized_kwargs = await self.sanitize_inputs(kwargs)
# 3. Audit logging
operation_id = await self.audit_logger.log_operation_start(
operation=operation.__name__,
user=user_context.user_id,
args_hash=self.hash_args(sanitized_args, sanitized_kwargs)
)
try:
# 4. Execute with monitoring
result = await self.monitor_execution(
operation, *sanitized_args, **sanitized_kwargs
)
# 5. Result sanitization
sanitized_result = await self.sanitize_output(result)
# 6. Log success
await self.audit_logger.log_operation_success(operation_id, result)
return sanitized_result
except Exception as e:
# 7. Log failure
await self.audit_logger.log_operation_failure(operation_id, e)
raise
async def sanitize_inputs(self, data):
"""Sanitize inputs to prevent injection attacks."""
if isinstance(data, str):
# Remove potentially dangerous characters
return re.sub(r'[<>"\']', '', data)
elif isinstance(data, dict):
return {k: await self.sanitize_inputs(v) for k, v in data.items()}
elif isinstance(data, list):
return [await self.sanitize_inputs(item) for item in data]
return data
async def verify_access(self, user_context, operation):
"""Verify user has access to quantum operation."""
required_permissions = self.get_required_permissions(operation)
user_permissions = await self.get_user_permissions(user_context.user_id)
if not all(perm in user_permissions for perm in required_permissions):
raise QuantumAccessDeniedError(
f"Insufficient permissions for {operation.__name__}"
)
Data Protection¶
Sensitive Data Handling:
class QuantumDataProtector:
def __init__(self, encryption_key):
self.cipher = QuantumSafeCipher(encryption_key)
self.data_classifier = DataClassifier()
async def store_sensitive_quantum_state(self, state_data, metadata):
"""Store quantum state with appropriate protection."""
# 1. Classify data sensitivity
sensitivity_level = await self.data_classifier.classify(state_data, metadata)
# 2. Apply appropriate protection
if sensitivity_level >= SensitivityLevel.CONFIDENTIAL:
state_data = await self.cipher.encrypt(state_data)
metadata['encrypted'] = True
metadata['encryption_algorithm'] = 'quantum_safe_aes_256'
# 3. Add data lineage tracking
metadata['data_lineage'] = await self.create_lineage_record(state_data)
# 4. Store with access controls
return await self.secure_storage.store(
data=state_data,
metadata=metadata,
access_policy=self.create_access_policy(sensitivity_level)
)
async def create_lineage_record(self, data):
"""Create data lineage tracking record."""
return {
'created_at': datetime.utcnow().isoformat(),
'data_hash': self.hash_data(data),
'processing_pipeline': await self.get_current_pipeline_id(),
'quantum_operations': await self.get_applied_quantum_operations()
}
Testing and Validation¶
Quantum Unit Testing¶
Comprehensive Testing Strategy:
class QuantumTestSuite:
def __init__(self):
self.test_backends = {}
self.mock_quantum_resources = MockQuantumResourceManager()
async def test_quantum_chain_coherence(self):
"""Test quantum chain maintains coherence."""
# Setup test environment
test_backend = await self.create_test_backend('simulator')
test_memory = QuantumMemory(classical_dim=512, quantum_dim=4, backend=test_backend)
chain = QLChain(memory=test_memory, backend=test_backend)
# Test coherence preservation
initial_coherence = chain.get_quantum_coherence()
# Execute operations
result = await chain.arun("Test query", quantum_enhanced=True)
# Validate coherence
final_coherence = chain.get_quantum_coherence()
decoherence = initial_coherence - final_coherence
assert decoherence < 0.1, f"Excessive decoherence: {decoherence}"
assert result['quantum_coherence'] > 0.7, "Low result coherence"
async def test_entanglement_stability(self):
"""Test entanglement remains stable under operations."""
# Create entangled components
component_a = QuantumComponent()
component_b = QuantumComponent()
entanglement_id = await component_a.create_entanglement(component_b, strength=0.9)
# Perform operations on both components
await component_a.quantum_operation("test_op_a")
await component_b.quantum_operation("test_op_b")
# Validate entanglement
entanglement_info = await component_a.get_entanglement_info(entanglement_id)
assert entanglement_info['strength'] > 0.8, "Entanglement degraded significantly"
assert entanglement_info['coherent'], "Entanglement lost coherence"
async def test_quantum_error_recovery(self):
"""Test quantum error recovery mechanisms."""
# Setup chain with error injection
error_injector = QuantumErrorInjector()
chain = QLChain(error_injector=error_injector)
# Inject decoherence error
error_injector.schedule_error(QuantumDecoherenceError, delay=1.0)
# Execute with error handling
with pytest.raises(QuantumDecoherenceError):
await chain.arun("Query that will fail")
# Verify recovery
await chain.reset_quantum_state()
result = await chain.arun("Query after recovery")
assert result['success'], "Chain failed to recover from error"
assert result['quantum_coherence'] > 0.5, "Poor coherence after recovery"
Performance Testing¶
Quantum Performance Benchmarks:
class QuantumPerformanceBenchmark:
def __init__(self):
self.metrics_collector = MetricsCollector()
self.benchmark_suite = {}
async def benchmark_quantum_operations(self):
"""Benchmark core quantum operations."""
benchmarks = [
('quantum_superposition', self.benchmark_superposition),
('entanglement_creation', self.benchmark_entanglement),
('quantum_measurement', self.benchmark_measurement),
('circuit_execution', self.benchmark_circuit_execution)
]
results = {}
for name, benchmark_func in benchmarks:
print(f"Running benchmark: {name}")
metrics = await self.run_benchmark(benchmark_func, iterations=10)
results[name] = metrics
# Performance assertions
self.validate_performance(name, metrics)
return results
async def run_benchmark(self, benchmark_func, iterations=10):
"""Run benchmark with statistical analysis."""
execution_times = []
coherence_levels = []
success_rates = []
for i in range(iterations):
start_time = time.time()
try:
result = await benchmark_func()
execution_time = time.time() - start_time
execution_times.append(execution_time)
coherence_levels.append(result.get('coherence', 0))
success_rates.append(1.0 if result.get('success') else 0.0)
except Exception as e:
logger.warning(f"Benchmark iteration {i} failed: {e}")
success_rates.append(0.0)
return {
'mean_execution_time': statistics.mean(execution_times),
'std_execution_time': statistics.stdev(execution_times) if len(execution_times) > 1 else 0,
'mean_coherence': statistics.mean(coherence_levels) if coherence_levels else 0,
'success_rate': statistics.mean(success_rates),
'iterations': iterations
}
def validate_performance(self, benchmark_name, metrics):
"""Validate benchmark results against performance requirements."""
requirements = {
'quantum_superposition': {
'max_execution_time': 2.0,
'min_coherence': 0.8,
'min_success_rate': 0.95
},
'entanglement_creation': {
'max_execution_time': 1.5,
'min_coherence': 0.85,
'min_success_rate': 0.98
}
}
req = requirements.get(benchmark_name, {})
if 'max_execution_time' in req:
assert metrics['mean_execution_time'] <= req['max_execution_time'], \
f"{benchmark_name} execution time too high: {metrics['mean_execution_time']}"
if 'min_coherence' in req:
assert metrics['mean_coherence'] >= req['min_coherence'], \
f"{benchmark_name} coherence too low: {metrics['mean_coherence']}"
if 'min_success_rate' in req:
assert metrics['success_rate'] >= req['min_success_rate'], \
f"{benchmark_name} success rate too low: {metrics['success_rate']}"
Deployment Strategies¶
Production Deployment¶
Production-Ready Configuration:
class ProductionQuantumConfig:
@staticmethod
def create_production_config():
"""Create production-optimized configuration."""
return QuantumConfig(
# Quantum parameters
num_qubits=6, # Balanced for stability vs capability
circuit_depth=8, # Optimized for NISQ devices
decoherence_threshold=0.05, # Strict for production
# Backend configuration
backend_type="qiskit",
optimization_level=3, # Maximum optimization
shots=4096, # High precision
# Error correction and resilience
enable_error_correction=True,
enable_decoherence_mitigation=True,
max_retry_attempts=3,
# Resource management
max_concurrent_operations=4,
memory_limit_mb=512,
operation_timeout_seconds=30,
# Monitoring and logging
enable_metrics=True,
enable_audit_logging=True,
log_level="INFO"
)
@staticmethod
def create_development_config():
"""Create development-friendly configuration."""
return QuantumConfig(
# More permissive for development
num_qubits=4,
circuit_depth=6,
decoherence_threshold=0.2,
backend_type="simulator",
optimization_level=1,
shots=1024,
# Faster feedback for development
max_retry_attempts=1,
operation_timeout_seconds=10,
# Verbose logging for debugging
log_level="DEBUG",
enable_debug_metrics=True
)
Scaling Strategies¶
Horizontal Scaling:
class QuantumClusterManager:
def __init__(self, cluster_config):
self.cluster_config = cluster_config
self.node_pool = {}
self.load_balancer = QuantumLoadBalancer()
async def deploy_quantum_cluster(self):
"""Deploy quantum computing cluster."""
# Create quantum compute nodes
for i in range(self.cluster_config.num_quantum_nodes):
node = await self.create_quantum_node(f"quantum-node-{i}")
self.node_pool[node.id] = node
# Create classical compute nodes
for i in range(self.cluster_config.num_classical_nodes):
node = await self.create_classical_node(f"classical-node-{i}")
self.node_pool[node.id] = node
# Setup load balancing
await self.load_balancer.configure_nodes(list(self.node_pool.values()))
# Health monitoring
asyncio.create_task(self.monitor_cluster_health())
async def route_quantum_request(self, request):
"""Route quantum request to optimal node."""
# Analyze request requirements
requirements = await self.analyze_request_requirements(request)
# Find optimal node
optimal_node = await self.load_balancer.select_node(requirements)
if not optimal_node:
raise NoAvailableQuantumNodesError("No suitable quantum nodes available")
# Execute request
return await optimal_node.execute_request(request)
async def monitor_cluster_health(self):
"""Monitor cluster health and auto-scale."""
while True:
try:
# Check node health
unhealthy_nodes = []
for node_id, node in self.node_pool.items():
if not await node.health_check():
unhealthy_nodes.append(node_id)
# Remove unhealthy nodes
for node_id in unhealthy_nodes:
await self.remove_node(node_id)
# Check if scaling needed
metrics = await self.load_balancer.get_metrics()
if metrics.avg_cpu_usage > 0.8:
await self.scale_up()
elif metrics.avg_cpu_usage < 0.3 and len(self.node_pool) > self.cluster_config.min_nodes:
await self.scale_down()
await asyncio.sleep(60) # Check every minute
except Exception as e:
logger.error(f"Cluster monitoring error: {e}")
await asyncio.sleep(120) # Longer delay on error
Monitoring and Observability¶
Comprehensive Monitoring¶
Quantum Metrics Collection:
class QuantumMetricsCollector:
def __init__(self):
self.metrics_store = MetricsStore()
self.alert_manager = AlertManager()
async def collect_quantum_metrics(self, operation, result):
"""Collect comprehensive quantum operation metrics."""
metrics = {
'timestamp': datetime.utcnow(),
'operation_type': operation.__class__.__name__,
'execution_time': result.execution_time,
'quantum_coherence': result.quantum_coherence,
'entanglement_count': len(result.entanglements),
'decoherence_level': result.decoherence_level,
'success': result.success,
'error_type': type(result.error).__name__ if result.error else None,
'resource_usage': await self.collect_resource_metrics(),
'performance_score': self.calculate_performance_score(result)
}
# Store metrics
await self.metrics_store.store(metrics)
# Check for alerts
await self.check_alert_conditions(metrics)
async def collect_resource_metrics(self):
"""Collect quantum resource usage metrics."""
return {
'quantum_memory_usage': await self.get_quantum_memory_usage(),
'classical_memory_usage': psutil.virtual_memory().percent,
'cpu_usage': psutil.cpu_percent(),
'active_quantum_circuits': await self.count_active_circuits(),
'backend_queue_size': await self.get_backend_queue_size()
}
async def check_alert_conditions(self, metrics):
"""Check for alerting conditions."""
alert_conditions = [
('high_decoherence', metrics['decoherence_level'] > 0.5),
('low_coherence', metrics['quantum_coherence'] < 0.3),
('high_execution_time', metrics['execution_time'] > 10.0),
('memory_pressure', metrics['resource_usage']['quantum_memory_usage'] > 85),
('high_error_rate', await self.calculate_error_rate() > 0.1)
]
for alert_name, condition in alert_conditions:
if condition:
await self.alert_manager.trigger_alert(alert_name, metrics)
def calculate_performance_score(self, result):
"""Calculate overall performance score."""
factors = {
'coherence': result.quantum_coherence * 0.3,
'speed': max(0, (10 - result.execution_time) / 10) * 0.3,
'success': 1.0 if result.success else 0.0 * 0.2,
'efficiency': (1 - result.decoherence_level) * 0.2
}
return sum(factors.values())
Dashboard and Visualization¶
Real-time Quantum Dashboard:
class QuantumDashboard:
def __init__(self, metrics_collector):
self.metrics_collector = metrics_collector
self.dashboard_data = {}
async def generate_dashboard_data(self):
"""Generate real-time dashboard data."""
# Get recent metrics
recent_metrics = await self.metrics_collector.get_recent_metrics(hours=1)
dashboard_data = {
'quantum_health': {
'avg_coherence': self.calculate_avg_coherence(recent_metrics),
'success_rate': self.calculate_success_rate(recent_metrics),
'avg_decoherence': self.calculate_avg_decoherence(recent_metrics),
'status': self.determine_system_status(recent_metrics)
},
'performance': {
'avg_execution_time': self.calculate_avg_execution_time(recent_metrics),
'throughput': self.calculate_throughput(recent_metrics),
'performance_trend': self.calculate_performance_trend(recent_metrics)
},
'resources': {
'quantum_memory_usage': await self.get_current_quantum_memory_usage(),
'active_operations': await self.count_active_operations(),
'backend_status': await self.get_backend_status()
},
'alerts': await self.get_active_alerts()
}
return dashboard_data
def determine_system_status(self, metrics):
"""Determine overall system health status."""
recent_errors = sum(1 for m in metrics if not m.get('success', True))
error_rate = recent_errors / len(metrics) if metrics else 0
avg_coherence = self.calculate_avg_coherence(metrics)
if error_rate > 0.2 or avg_coherence < 0.3:
return 'critical'
elif error_rate > 0.1 or avg_coherence < 0.5:
return 'warning'
else:
return 'healthy'
These best practices provide a comprehensive foundation for building production-ready quantum-classical hybrid AI applications with QuantumLangChain, covering all aspects from development to deployment and monitoring.