π§ API ReferenceΒΆ
π Licensed Component - Contact: bajpaikrishna715@gmail.com for licensing
QuantumLangChain API OverviewΒΆ
This comprehensive API reference covers all modules, classes, and functions available in QuantumLangChain.
graph TB
subgraph "Core API"
A[QLChain]
B[Quantum Memory]
C[Entangled Agents]
D[Vector Stores]
end
subgraph "Backend APIs"
E[Qiskit Backend]
F[PennyLane Backend]
G[Braket Backend]
H[Custom Backends]
end
subgraph "Utility APIs"
I[Embeddings]
J[Prompts]
K[Tools]
L[Monitoring]
end
subgraph "Licensing API"
M[License Manager]
N[Feature Gates]
O[Usage Tracking]
P[Grace Periods]
end
A --> E
B --> F
C --> G
D --> H
E --> I
F --> J
G --> K
H --> L
I --> M
J --> N
K --> O
L --> P
𧬠Core Classes¢
QLChainΒΆ
The main interface for quantum-enhanced language processing.
class QLChain(LicensedComponent):
"""
Quantum-enhanced language chain for advanced AI reasoning.
Combines quantum computing principles with classical language models
to provide enhanced reasoning, creativity, and problem-solving capabilities.
"""
def __init__(
self,
backend: str = "qiskit",
quantum_dim: int = 4,
classical_dim: int = 512,
entanglement_strength: float = 0.7,
temperature: float = 0.7,
max_tokens: int = 2048,
memory: Optional[QuantumMemory] = None,
**kwargs
):
"""
Initialize QLChain.
Args:
backend: Quantum backend ("qiskit", "pennylane", "braket")
quantum_dim: Number of qubits for quantum processing
classical_dim: Classical embedding dimension
entanglement_strength: Strength of quantum entanglement (0-1)
temperature: Sampling temperature for responses
max_tokens: Maximum tokens in response
memory: Optional quantum memory system
**kwargs: Additional configuration parameters
Raises:
LicenseError: If license validation fails
ValueError: If invalid parameters provided
"""
async def arun(
self,
query: str,
context: Optional[str] = None,
reasoning_depth: int = 1,
quantum_creativity: float = 0.5,
**kwargs
) -> Dict[str, Any]:
"""
Run quantum-enhanced reasoning asynchronously.
Args:
query: Input query or prompt
context: Optional context information
reasoning_depth: Depth of quantum reasoning (1-5)
quantum_creativity: Quantum creativity boost (0-1)
**kwargs: Additional parameters
Returns:
Dict containing response and metadata
Example:
>>> chain = QLChain()
>>> result = await chain.arun("Explain quantum computing")
>>> print(result['response'])
"""
def run(
self,
query: str,
context: Optional[str] = None,
**kwargs
) -> Dict[str, Any]:
"""
Synchronous version of arun.
Args:
query: Input query or prompt
context: Optional context information
**kwargs: Additional parameters
Returns:
Dict containing response and metadata
"""
async def astream(
self,
query: str,
**kwargs
) -> AsyncIterator[str]:
"""
Stream quantum reasoning results.
Args:
query: Input query or prompt
**kwargs: Additional parameters
Yields:
String chunks of the response as they're generated
Example:
>>> async for chunk in chain.astream("Tell me about AI"):
... print(chunk, end="")
"""
def get_quantum_state(self) -> QuantumState:
"""
Get current quantum state of the system.
Returns:
Current quantum state representation
"""
def reset_quantum_state(self) -> None:
"""Reset quantum state to initial condition."""
def get_performance_metrics(self) -> Dict[str, float]:
"""
Get performance metrics for the chain.
Returns:
Dictionary of performance metrics
"""
QuantumMemoryΒΆ
Quantum-enhanced memory system for advanced information storage and retrieval.
class QuantumMemory(LicensedComponent):
"""
Quantum memory system with superposition storage and entangled retrieval.
"""
def __init__(
self,
classical_dim: int = 512,
quantum_dim: int = 4,
decoherence_rate: float = 0.01,
error_correction: bool = False,
persistence: bool = False,
**kwargs
):
"""
Initialize quantum memory.
Args:
classical_dim: Classical memory dimension
quantum_dim: Quantum memory dimension (qubits)
decoherence_rate: Rate of quantum decoherence
error_correction: Enable quantum error correction
persistence: Enable persistent storage
**kwargs: Additional configuration
"""
async def store(
self,
key: str,
value: Any,
importance: float = 0.5,
tags: Optional[List[str]] = None,
**metadata
) -> bool:
"""
Store information in quantum memory.
Args:
key: Unique identifier for the memory
value: Information to store
importance: Importance weight (0-1)
tags: Optional tags for categorization
**metadata: Additional metadata
Returns:
True if storage successful
"""
async def retrieve(
self,
query: str,
similarity_threshold: float = 0.7,
max_results: int = 10,
**kwargs
) -> List[MemoryItem]:
"""
Retrieve information using quantum search.
Args:
query: Search query
similarity_threshold: Minimum similarity for results
max_results: Maximum number of results
**kwargs: Additional search parameters
Returns:
List of matching memory items
"""
async def quantum_interference_search(
self,
query: str,
interference_strength: float = 0.8,
**kwargs
) -> List[MemoryItem]:
"""
Advanced search using quantum interference patterns.
Args:
query: Search query
interference_strength: Quantum interference strength
**kwargs: Additional parameters
Returns:
Enhanced search results with quantum interference
"""
def get_memory_stats(self) -> MemoryStats:
"""
Get memory usage statistics.
Returns:
Memory statistics object
"""
EntangledAgentΒΆ
Agent with quantum entanglement capabilities for multi-agent coordination.
class EntangledAgent(LicensedComponent):
"""
Quantum-entangled agent for advanced multi-agent systems.
"""
def __init__(
self,
name: str,
role: str,
specialization: Optional[str] = None,
quantum_dim: int = 4,
capabilities: Optional[List[str]] = None,
**kwargs
):
"""
Initialize entangled agent.
Args:
name: Agent name/identifier
role: Agent role (coordinator, executor, analyzer, etc.)
specialization: Agent specialization area
quantum_dim: Quantum dimension for entanglement
capabilities: List of agent capabilities
**kwargs: Additional configuration
"""
async def entangle_with(
self,
other_agent: 'EntangledAgent',
entanglement_strength: float = 0.8
) -> bool:
"""
Establish quantum entanglement with another agent.
Args:
other_agent: Target agent for entanglement
entanglement_strength: Strength of entanglement (0-1)
Returns:
True if entanglement successful
"""
async def communicate(
self,
message: Any,
target: Optional[str] = None,
quantum_channel: bool = True
) -> Any:
"""
Communicate with entangled agents.
Args:
message: Message to send
target: Target agent name (None for broadcast)
quantum_channel: Use quantum communication channel
Returns:
Response from target agent(s)
"""
async def collaborate(
self,
task: Task,
partners: List['EntangledAgent']
) -> Result:
"""
Collaborate with other agents on a task.
Args:
task: Task to collaborate on
partners: List of partner agents
Returns:
Collaborative task result
"""
def get_entanglement_state(self) -> EntanglementState:
"""
Get current entanglement state.
Returns:
Current entanglement state information
"""
ποΈ Chain TypesΒΆ
RAGQuantumChainΒΆ
Retrieval-Augmented Generation with quantum enhancement.
class RAGQuantumChain(QLChain):
"""
Quantum-enhanced Retrieval-Augmented Generation chain.
"""
def __init__(
self,
vectorstore: VectorStore,
quantum_retrieval_strength: float = 0.8,
retrieval_k: int = 10,
**kwargs
):
"""
Initialize RAG quantum chain.
Args:
vectorstore: Vector store for document retrieval
quantum_retrieval_strength: Quantum enhancement strength
retrieval_k: Number of documents to retrieve
**kwargs: Additional QLChain parameters
"""
async def quantum_retrieval(
self,
query: str,
k: Optional[int] = None,
quantum_interference: bool = True,
**kwargs
) -> List[Document]:
"""
Quantum-enhanced document retrieval.
Args:
query: Retrieval query
k: Number of documents to retrieve
quantum_interference: Use quantum interference
**kwargs: Additional retrieval parameters
Returns:
List of retrieved documents
"""
ConversationalQuantumChainΒΆ
Conversational AI with quantum memory.
class ConversationalQuantumChain(QLChain):
"""
Conversational chain with quantum memory persistence.
"""
def __init__(
self,
memory: QuantumConversationMemory,
personality: Optional[str] = None,
**kwargs
):
"""
Initialize conversational quantum chain.
Args:
memory: Quantum conversation memory
personality: AI personality type
**kwargs: Additional QLChain parameters
"""
async def conversation_turn(
self,
input_text: str,
session_id: str,
**kwargs
) -> str:
"""
Process single conversation turn.
Args:
input_text: User input
session_id: Conversation session ID
**kwargs: Additional parameters
Returns:
AI response
"""
π Vector StoresΒΆ
QuantumVectorStoreΒΆ
Vector store with quantum search capabilities.
class QuantumVectorStore(LicensedComponent):
"""
Vector store with quantum-enhanced similarity search.
"""
def __init__(
self,
embeddings: Embeddings,
quantum_search: bool = True,
dimension: Optional[int] = None,
**kwargs
):
"""
Initialize quantum vector store.
Args:
embeddings: Embedding function
quantum_search: Enable quantum search
dimension: Vector dimension
**kwargs: Additional configuration
"""
async def aadd_texts(
self,
texts: List[str],
metadatas: Optional[List[Dict]] = None,
quantum_enhancement: bool = True,
**kwargs
) -> List[str]:
"""
Add texts to vector store.
Args:
texts: List of texts to add
metadatas: Optional metadata for each text
quantum_enhancement: Apply quantum enhancement
**kwargs: Additional parameters
Returns:
List of document IDs
"""
async def asimilarity_search(
self,
query: str,
k: int = 4,
quantum_interference: bool = False,
**kwargs
) -> List[Document]:
"""
Quantum-enhanced similarity search.
Args:
query: Search query
k: Number of results
quantum_interference: Use quantum interference
**kwargs: Additional search parameters
Returns:
List of similar documents
"""
π Backend APIsΒΆ
QiskitBackendΒΆ
class QiskitBackend(QuantumBackend):
"""Qiskit quantum computing backend."""
def __init__(
self,
backend_name: str = "qasm_simulator",
shots: int = 1024,
optimization_level: int = 1,
**kwargs
):
"""Initialize Qiskit backend."""
async def execute_circuit(
self,
circuit: QuantumCircuit,
**kwargs
) -> Result:
"""Execute quantum circuit."""
PennyLaneBackendΒΆ
class PennyLaneBackend(QuantumBackend):
"""PennyLane quantum computing backend."""
def __init__(
self,
device: str = "default.qubit",
shots: int = 1000,
**kwargs
):
"""Initialize PennyLane backend."""
async def execute_circuit(
self,
circuit: pennylane.QNode,
**kwargs
) -> Any:
"""Execute quantum circuit."""
π οΈ UtilitiesΒΆ
QuantumEmbeddingsΒΆ
class QuantumEmbeddings(LicensedComponent):
"""Quantum-enhanced embeddings."""
def __init__(
self,
classical_dim: int = 768,
quantum_dim: int = 8,
entanglement_strength: float = 0.8,
**kwargs
):
"""Initialize quantum embeddings."""
async def aembed_documents(
self,
texts: List[str]
) -> List[List[float]]:
"""Embed documents with quantum enhancement."""
async def aembed_query(
self,
text: str
) -> List[float]:
"""Embed query with quantum enhancement."""
QuantumPromptTemplateΒΆ
class QuantumPromptTemplate:
"""Template for quantum-enhanced prompts."""
def __init__(
self,
template: str,
quantum_variables: List[str],
classical_variables: List[str],
**kwargs
):
"""Initialize quantum prompt template."""
def format(self, **kwargs) -> QuantumPrompt:
"""Format template with variables."""
π Licensing APIΒΆ
LicenseManagerΒΆ
class LicenseManager:
"""Manages licensing and feature access."""
@staticmethod
def validate_license(
required_features: List[str],
required_tier: str = "basic"
) -> bool:
"""Validate license for features."""
@staticmethod
def get_license_info() -> LicenseInfo:
"""Get current license information."""
@staticmethod
def check_grace_period() -> GracePeriodInfo:
"""Check grace period status."""
DecoratorsΒΆ
def requires_license(
tier: str = "basic",
features: Optional[List[str]] = None
):
"""
Decorator for license-protected functions.
Args:
tier: Required license tier
features: Required features
"""
def track_usage(
feature: str,
weight: float = 1.0
):
"""
Decorator for usage tracking.
Args:
feature: Feature being used
weight: Usage weight
"""
π MonitoringΒΆ
PerformanceMonitorΒΆ
class PerformanceMonitor:
"""Monitor system performance and usage."""
def track(self, operation: str) -> ContextManager:
"""Track operation performance."""
def get_metrics(self) -> Dict[str, Any]:
"""Get performance metrics."""
def reset_metrics(self) -> None:
"""Reset performance metrics."""
π¨ ExceptionsΒΆ
Core ExceptionsΒΆ
class QuantumLangChainError(Exception):
"""Base exception for QuantumLangChain."""
class LicenseError(QuantumLangChainError):
"""License validation or access error."""
class QuantumError(QuantumLangChainError):
"""Quantum processing error."""
class BackendError(QuantumLangChainError):
"""Quantum backend error."""
class MemoryError(QuantumLangChainError):
"""Quantum memory error."""
class EntanglementError(QuantumLangChainError):
"""Agent entanglement error."""
π§ ConfigurationΒΆ
Global ConfigurationΒΆ
from quantumlangchain.config import Config
# Set global configuration
Config.set({
"default_backend": "qiskit",
"default_quantum_dim": 4,
"enable_debugging": False,
"license_check_interval": 3600,
"grace_period_hours": 24
})
# Get configuration
backend = Config.get("default_backend")
π Usage ExamplesΒΆ
Basic UsageΒΆ
from quantumlangchain import QLChain
# Simple initialization
chain = QLChain()
# Advanced initialization
chain = QLChain(
backend="qiskit",
quantum_dim=8,
entanglement_strength=0.9,
temperature=0.7
)
# Run query
result = await chain.arun("Explain quantum computing")
Error HandlingΒΆ
from quantumlangchain import QLChain
from quantumlangchain.exceptions import LicenseError, QuantumError
try:
chain = QLChain(quantum_dim=16)
result = await chain.arun("Complex question")
except LicenseError as e:
print(f"License error: {e}")
print("Contact: bajpaikrishna715@gmail.com")
except QuantumError as e:
print(f"Quantum error: {e}")
except Exception as e:
print(f"Unexpected error: {e}")
π License RequirementsΒΆ
All API features require valid licensing:
- Basic API: Basic license tier
- Advanced API: Professional license tier
- Enterprise API: Enterprise license tier
- Research API: Research license tier
Contact bajpaikrishna715@gmail.com for licensing.
This API reference provides comprehensive coverage of all QuantumLangChain functionality for building next-generation quantum-enhanced AI applications.