Federated Learning¶
Distributed memetic computing across multiple nodes and organizations.
Overview¶
Q-Memetic AI's federated learning system enables collaborative memetic computing across distributed networks while preserving data privacy and organizational boundaries. This allows multiple institutions to benefit from collective intelligence without sharing sensitive data.
Federated Architecture¶
Network Topology¶
The federated system operates as a peer-to-peer network with optional coordination nodes:
graph TB
A[Coordinator Node] --> B[Research Institution A]
A --> C[Research Institution B]
A --> D[Research Institution C]
B --> E[Local Meme Pool A]
C --> F[Local Meme Pool B]
D --> G[Local Meme Pool C]
B <--> C
C <--> D
B <--> D
Node Types¶
- Coordinator Nodes: Facilitate discovery and coordination (optional)
- Computing Nodes: Participate in federated evolution and sharing
- Storage Nodes: Provide distributed meme storage
- Gateway Nodes: Bridge different federated networks
Implementation¶
Setting Up a Federated Node¶
from qmemetic_ai.federation.client import FederatedClient
from qmemetic_ai.federation.protocols import FederatedProtocol
# Initialize federated client
fed_client = FederatedClient(
node_id="university_research_lab",
config={
"discovery_port": 8080,
"coordination_port": 8081,
"max_peers": 20,
"trust_threshold": 0.7,
"privacy_level": "high",
"bandwidth_limit": "10MB/s"
}
)
# Configure federation protocols
protocol = FederatedProtocol(
encryption_enabled=True,
differential_privacy=True,
consensus_algorithm="proof_of_contribution"
)
fed_client.set_protocol(protocol)
Network Discovery and Registration¶
# Register with the federated network
registration_result = await fed_client.register_with_network(
capabilities={
"computational_power": "high",
"storage_capacity": "1TB",
"specializations": ["AI", "quantum_computing", "biology"],
"available_hours": "24/7"
},
contact_info={
"organization": "University Research Lab",
"contact_email": "federated@university.edu",
"geographic_region": "North America"
}
)
if registration_result["success"]:
print(f"Registered as node: {registration_result['node_id']}")
print(f"Network address: {registration_result['network_address']}")
Peer Discovery¶
# Discover other nodes in the network
peers = await fed_client.discover_peers(
filters={
"specializations": ["AI", "machine_learning"],
"min_trust_score": 0.8,
"geographic_preference": "same_region",
"active_within_hours": 24
}
)
print(f"Discovered {len(peers)} compatible peers:")
for peer in peers:
print(f" {peer.node_id}: {peer.specializations} (trust: {peer.trust_score:.2f})")
Federated Evolution¶
Distributed Genetic Algorithms¶
async def federated_evolution_session():
"""Run distributed evolution across multiple nodes."""
# Prepare local meme population
local_memes = [
engine.create_meme("Local research insight A"),
engine.create_meme("Local research insight B"),
engine.create_meme("Local research insight C")
]
# Configure federated evolution parameters
fed_params = {
"generations": 10,
"migration_rate": 0.2, # 20% of population migrates each generation
"migration_interval": 2, # Migrate every 2 generations
"consensus_threshold": 0.8, # 80% agreement for accepting mutations
"privacy_budget": 1.0 # Differential privacy budget
}
# Start federated evolution
evolution_session = await fed_client.start_federated_evolution(
local_population=local_memes,
parameters=fed_params,
participating_nodes=selected_peers
)
# Monitor evolution progress
async for generation_result in evolution_session:
print(f"Generation {generation_result.generation}:")
print(f" Local fitness: {generation_result.local_fitness:.3f}")
print(f" Global fitness: {generation_result.global_fitness:.3f}")
print(f" Received memes: {len(generation_result.received_memes)}")
print(f" Sent memes: {len(generation_result.sent_memes)}")
return evolution_session.final_population
# Run federated evolution
evolved_population = await federated_evolution_session()
Migration Strategies¶
class MigrationStrategy:
"""Manage meme migration between federated nodes."""
def __init__(self, strategy_type="fitness_based"):
self.strategy_type = strategy_type
self.migration_history = []
def select_migrants(self, population, migration_rate=0.2):
"""Select memes for migration to other nodes."""
num_migrants = int(len(population) * migration_rate)
if self.strategy_type == "fitness_based":
# Migrate highest fitness memes
sorted_pop = sorted(population, key=lambda m: m.fitness, reverse=True)
migrants = sorted_pop[:num_migrants]
elif self.strategy_type == "diversity_based":
# Migrate most diverse memes
migrants = self.select_diverse_memes(population, num_migrants)
elif self.strategy_type == "random":
# Random migration
migrants = random.sample(population, num_migrants)
elif self.strategy_type == "novelty_based":
# Migrate novel memes that might be valuable elsewhere
migrants = self.select_novel_memes(population, num_migrants)
return migrants
def receive_migrants(self, local_population, incoming_memes):
"""Integrate incoming memes into local population."""
# Apply privacy filters
filtered_memes = self.apply_privacy_filters(incoming_memes)
# Validate memes for compatibility
validated_memes = self.validate_incoming_memes(filtered_memes)
# Integrate into local population
integrated_population = self.integrate_memes(local_population, validated_memes)
return integrated_population
# Use migration strategy
migration_strategy = MigrationStrategy(strategy_type="diversity_based")
fed_client.set_migration_strategy(migration_strategy)
Privacy-Preserving Techniques¶
Differential Privacy¶
class DifferentialPrivacyManager:
"""Implement differential privacy for federated learning."""
def __init__(self, epsilon=1.0, delta=1e-5):
self.epsilon = epsilon # Privacy budget
self.delta = delta # Failure probability
self.noise_scale = 1.0 / epsilon
def add_noise_to_meme(self, meme):
"""Add calibrated noise to preserve privacy."""
# Clone meme to avoid modifying original
private_meme = meme.copy()
# Add noise to numerical features
if hasattr(private_meme, 'vector'):
noise = np.random.laplace(0, self.noise_scale, len(private_meme.vector))
private_meme.vector = private_meme.vector + noise
# Add noise to metadata
if hasattr(private_meme.metadata, 'fitness'):
noise = np.random.laplace(0, self.noise_scale)
private_meme.metadata.fitness += noise
return private_meme
def privacy_budget_check(self, requested_operations):
"""Check if privacy budget allows requested operations."""
total_cost = sum(op.privacy_cost for op in requested_operations)
return total_cost <= self.epsilon
def aggregate_with_privacy(self, local_gradients, global_model):
"""Aggregate model updates with differential privacy."""
# Add noise to gradients before aggregation
noisy_gradients = []
for gradient in local_gradients:
noise = np.random.laplace(0, self.noise_scale, gradient.shape)
noisy_gradients.append(gradient + noise)
# Aggregate noisy gradients
aggregated_gradient = np.mean(noisy_gradients, axis=0)
# Update global model
updated_model = global_model + aggregated_gradient
return updated_model
# Apply differential privacy
privacy_manager = DifferentialPrivacyManager(epsilon=1.0)
fed_client.set_privacy_manager(privacy_manager)
Secure Multi-Party Computation¶
class SecureComputationProtocol:
"""Implement secure multi-party computation for federated operations."""
def __init__(self, num_parties, threshold=None):
self.num_parties = num_parties
self.threshold = threshold or (num_parties // 2 + 1)
self.secret_shares = {}
def secret_share(self, value, party_id):
"""Create secret shares of a value."""
# Generate random polynomial coefficients
coefficients = [value] + [random.randint(0, 2**31 - 1) for _ in range(self.threshold - 1)]
# Generate shares for each party
shares = {}
for i in range(1, self.num_parties + 1):
share_value = sum(coeff * (i ** j) for j, coeff in enumerate(coefficients)) % (2**31)
shares[i] = share_value
return shares
def reconstruct_secret(self, shares):
"""Reconstruct secret from shares using Lagrange interpolation."""
if len(shares) < self.threshold:
raise ValueError("Insufficient shares for reconstruction")
# Lagrange interpolation at x=0
secret = 0
for i, (x_i, y_i) in enumerate(shares.items()):
# Calculate Lagrange basis polynomial
basis = 1
for j, (x_j, _) in enumerate(shares.items()):
if i != j:
basis *= (-x_j) / (x_i - x_j)
secret += y_i * basis
return int(secret) % (2**31)
def secure_aggregation(self, local_values, participant_ids):
"""Perform secure aggregation of values from multiple parties."""
# Each party creates secret shares of their value
all_shares = {}
for party_id, value in zip(participant_ids, local_values):
shares = self.secret_share(value, party_id)
all_shares[party_id] = shares
# Aggregate shares
aggregated_shares = {}
for party_id in participant_ids:
aggregated_shares[party_id] = sum(
shares[party_id] for shares in all_shares.values()
)
# Reconstruct aggregated result
aggregated_result = self.reconstruct_secret(aggregated_shares)
return aggregated_result
# Use secure computation
secure_protocol = SecureComputationProtocol(num_parties=5)
fed_client.set_secure_protocol(secure_protocol)
Consensus Mechanisms¶
Proof of Contribution¶
class ProofOfContribution:
"""Consensus mechanism based on computational contributions."""
def __init__(self):
self.contribution_history = {}
self.reputation_scores = {}
def calculate_contribution_score(self, node_id, contributions):
"""Calculate contribution score for a node."""
score = 0.0
# Computational contribution (CPU hours, evolution cycles)
computational_score = contributions.get("computational_hours", 0) * 0.3
# Data contribution (unique memes, dataset size)
data_score = contributions.get("unique_memes", 0) * 0.2
# Quality contribution (meme fitness improvements)
quality_score = contributions.get("fitness_improvements", 0) * 0.3
# Network contribution (peer connections, uptime)
network_score = contributions.get("network_uptime", 0) * 0.2
total_score = computational_score + data_score + quality_score + network_score
# Update historical contribution
if node_id not in self.contribution_history:
self.contribution_history[node_id] = []
self.contribution_history[node_id].append(total_score)
return total_score
def update_reputation(self, node_id, contribution_score):
"""Update node reputation based on contributions."""
current_reputation = self.reputation_scores.get(node_id, 0.5)
# Exponential moving average for reputation
alpha = 0.1 # Learning rate
new_reputation = alpha * contribution_score + (1 - alpha) * current_reputation
self.reputation_scores[node_id] = max(0.0, min(1.0, new_reputation))
return self.reputation_scores[node_id]
def select_validators(self, num_validators=5):
"""Select validator nodes based on reputation and contribution."""
# Sort nodes by reputation score
sorted_nodes = sorted(
self.reputation_scores.items(),
key=lambda x: x[1],
reverse=True
)
# Select top contributors as validators
validators = [node_id for node_id, _ in sorted_nodes[:num_validators]]
return validators
# Implement proof of contribution
poc_consensus = ProofOfContribution()
fed_client.set_consensus_mechanism(poc_consensus)
Byzantine Fault Tolerance¶
class ByzantineFaultTolerantConsensus:
"""BFT consensus for federated memetic computing."""
def __init__(self, num_nodes, max_byzantine_nodes=None):
self.num_nodes = num_nodes
self.max_byzantine_nodes = max_byzantine_nodes or (num_nodes - 1) // 3
self.view_number = 0
self.sequence_number = 0
self.message_log = []
async def propose_meme_update(self, meme_update, proposer_id):
"""Propose a meme update using PBFT protocol."""
proposal = {
"type": "prepare",
"view": self.view_number,
"sequence": self.sequence_number,
"meme_update": meme_update,
"proposer": proposer_id,
"timestamp": time.time()
}
# Phase 1: Prepare
prepare_responses = await self.broadcast_prepare(proposal)
if len(prepare_responses) >= 2 * self.max_byzantine_nodes + 1:
# Phase 2: Commit
commit_responses = await self.broadcast_commit(proposal)
if len(commit_responses) >= 2 * self.max_byzantine_nodes + 1:
# Apply meme update
await self.apply_meme_update(meme_update)
self.sequence_number += 1
return True
return False
async def validate_meme_update(self, meme_update):
"""Validate proposed meme update."""
validation_checks = [
self.check_meme_integrity(meme_update),
self.check_fitness_improvement(meme_update),
self.check_privacy_compliance(meme_update),
self.check_consensus_rules(meme_update)
]
return all(validation_checks)
# Use Byzantine fault tolerance
bft_consensus = ByzantineFaultTolerantConsensus(num_nodes=10)
fed_client.set_bft_consensus(bft_consensus)
Federated Learning Applications¶
Cross-Domain Knowledge Transfer¶
async def cross_domain_transfer():
"""Transfer knowledge between different research domains."""
# Define source and target domains
source_domain = "computer_science"
target_domain = "biology"
# Find domain-specific federated nodes
source_nodes = await fed_client.find_nodes_by_domain(source_domain)
target_nodes = await fed_client.find_nodes_by_domain(target_domain)
# Create transfer learning session
transfer_session = await fed_client.create_transfer_session(
source_nodes=source_nodes,
target_nodes=target_nodes,
transfer_method="domain_adaptation"
)
# Extract transferable knowledge patterns
transferable_patterns = await transfer_session.extract_patterns(
min_relevance=0.6,
max_domain_gap=0.8
)
print(f"Found {len(transferable_patterns)} transferable patterns")
# Apply domain adaptation
adapted_patterns = await transfer_session.adapt_patterns(
patterns=transferable_patterns,
target_domain_context=target_domain
)
return adapted_patterns
# Execute cross-domain transfer
transferred_knowledge = await cross_domain_transfer()
Collaborative Research Networks¶
class ResearchCollaboration:
"""Facilitate collaborative research through federated networks."""
def __init__(self, research_topic):
self.research_topic = research_topic
self.participating_institutions = []
self.shared_hypotheses = []
self.collaborative_experiments = []
async def form_research_consortium(self, topic_keywords):
"""Form consortium of institutions researching similar topics."""
# Find institutions with relevant expertise
relevant_nodes = await fed_client.search_nodes(
keywords=topic_keywords,
expertise_threshold=0.7
)
# Send collaboration invitations
invitations = []
for node in relevant_nodes:
invitation = await self.send_collaboration_invite(
node_id=node.node_id,
research_topic=self.research_topic,
proposed_contributions=self.define_contributions(node)
)
invitations.append(invitation)
# Process responses
confirmed_participants = []
for invitation in invitations:
response = await invitation.get_response(timeout=7200) # 2 hours
if response.accepted:
confirmed_participants.append(response.node_id)
self.participating_institutions = confirmed_participants
return confirmed_participants
async def collaborative_hypothesis_generation(self):
"""Generate research hypotheses collaboratively."""
# Collect local hypotheses from each institution
local_hypotheses = []
for institution in self.participating_institutions:
hypotheses = await fed_client.request_hypotheses(
node_id=institution,
research_topic=self.research_topic
)
local_hypotheses.extend(hypotheses)
# Merge and evolve hypotheses collaboratively
merged_hypotheses = await self.merge_hypotheses(local_hypotheses)
evolved_hypotheses = await fed_client.collaborative_evolution(
population=merged_hypotheses,
participants=self.participating_institutions,
generations=5
)
self.shared_hypotheses = evolved_hypotheses
return evolved_hypotheses
async def distribute_experiments(self, experiment_designs):
"""Distribute experiments across participating institutions."""
experiment_assignments = {}
for experiment in experiment_designs:
# Find best-suited institution for each experiment
best_match = await self.find_best_institution(
experiment=experiment,
criteria=["expertise", "resources", "availability"]
)
if best_match:
experiment_assignments[experiment.id] = best_match
await self.assign_experiment(experiment, best_match)
return experiment_assignments
# Create research collaboration
collaboration = ResearchCollaboration("AI safety in autonomous systems")
consortium = await collaboration.form_research_consortium(
["AI safety", "autonomous systems", "ethical AI"]
)
Performance Optimization¶
Load Balancing¶
class FederatedLoadBalancer:
"""Balance computational load across federated nodes."""
def __init__(self):
self.node_capacities = {}
self.current_loads = {}
self.load_history = {}
def update_node_capacity(self, node_id, capacity_info):
"""Update node capacity information."""
self.node_capacities[node_id] = {
"cpu_cores": capacity_info["cpu_cores"],
"memory_gb": capacity_info["memory_gb"],
"storage_gb": capacity_info["storage_gb"],
"network_bandwidth": capacity_info["network_bandwidth"],
"gpu_available": capacity_info.get("gpu_available", False)
}
def calculate_load_score(self, node_id):
"""Calculate current load score for a node."""
if node_id not in self.current_loads:
return 0.0
load = self.current_loads[node_id]
capacity = self.node_capacities.get(node_id, {})
if not capacity:
return 1.0 # Unknown capacity, assume fully loaded
# Calculate relative load
cpu_load = load.get("cpu_usage", 0) / capacity.get("cpu_cores", 1)
memory_load = load.get("memory_usage", 0) / capacity.get("memory_gb", 1)
# Weighted average
load_score = 0.6 * cpu_load + 0.4 * memory_load
return min(load_score, 1.0)
def select_optimal_nodes(self, task_requirements, num_nodes=3):
"""Select optimal nodes for task distribution."""
candidate_nodes = []
for node_id, capacity in self.node_capacities.items():
# Check if node meets requirements
if self.meets_requirements(capacity, task_requirements):
load_score = self.calculate_load_score(node_id)
suitability_score = self.calculate_suitability(capacity, task_requirements)
combined_score = 0.7 * (1 - load_score) + 0.3 * suitability_score
candidate_nodes.append((node_id, combined_score))
# Sort by combined score and select top nodes
candidate_nodes.sort(key=lambda x: x[1], reverse=True)
selected_nodes = [node_id for node_id, _ in candidate_nodes[:num_nodes]]
return selected_nodes
# Implement load balancing
load_balancer = FederatedLoadBalancer()
fed_client.set_load_balancer(load_balancer)
Bandwidth Optimization¶
class BandwidthOptimizer:
"""Optimize network bandwidth usage in federated operations."""
def __init__(self):
self.compression_algorithms = ["gzip", "lz4", "zstd"]
self.bandwidth_monitors = {}
def compress_meme_data(self, meme_data, algorithm="zstd"):
"""Compress meme data for efficient transmission."""
import zstandard as zstd
if algorithm == "zstd":
compressor = zstd.ZstdCompressor()
compressed_data = compressor.compress(meme_data.encode())
elif algorithm == "gzip":
import gzip
compressed_data = gzip.compress(meme_data.encode())
elif algorithm == "lz4":
import lz4.frame
compressed_data = lz4.frame.compress(meme_data.encode())
compression_ratio = len(meme_data) / len(compressed_data)
return compressed_data, compression_ratio
def adaptive_batch_sizing(self, available_bandwidth, data_size):
"""Adaptively determine optimal batch size for data transmission."""
# Target transmission time: 10 seconds per batch
target_time = 10.0 # seconds
# Calculate optimal batch size
optimal_batch_size = int(available_bandwidth * target_time)
# Ensure batch size is reasonable
min_batch_size = 1024 # 1 KB
max_batch_size = 10 * 1024 * 1024 # 10 MB
batch_size = max(min_batch_size, min(optimal_batch_size, max_batch_size))
# Calculate number of batches
num_batches = (data_size + batch_size - 1) // batch_size
return batch_size, num_batches
def prioritize_data_transmission(self, data_queue):
"""Prioritize data transmission based on importance."""
# Priority factors
priorities = {
"critical_updates": 1.0,
"evolution_results": 0.8,
"meme_migrations": 0.6,
"routine_sync": 0.4,
"backup_data": 0.2
}
# Sort queue by priority
prioritized_queue = sorted(
data_queue,
key=lambda item: priorities.get(item.type, 0.3),
reverse=True
)
return prioritized_queue
# Use bandwidth optimization
bandwidth_optimizer = BandwidthOptimizer()
fed_client.set_bandwidth_optimizer(bandwidth_optimizer)
Monitoring and Analytics¶
Federation Analytics Dashboard¶
class FederationAnalytics:
"""Analytics and monitoring for federated operations."""
def __init__(self):
self.metrics_collector = MetricsCollector()
self.performance_tracker = PerformanceTracker()
def generate_network_health_report(self):
"""Generate comprehensive network health report."""
report = {
"network_overview": {
"total_nodes": len(self.active_nodes),
"online_nodes": len(self.get_online_nodes()),
"network_uptime": self.calculate_network_uptime(),
"average_latency": self.calculate_average_latency()
},
"evolution_performance": {
"completed_sessions": self.count_completed_sessions(),
"average_convergence_time": self.calculate_convergence_time(),
"fitness_improvements": self.calculate_fitness_improvements(),
"successful_migrations": self.count_successful_migrations()
},
"resource_utilization": {
"total_cpu_hours": self.sum_cpu_usage(),
"total_bandwidth_used": self.sum_bandwidth_usage(),
"storage_efficiency": self.calculate_storage_efficiency(),
"cost_effectiveness": self.calculate_cost_effectiveness()
},
"security_metrics": {
"privacy_violations": self.count_privacy_violations(),
"consensus_failures": self.count_consensus_failures(),
"byzantine_incidents": self.count_byzantine_incidents(),
"data_integrity_score": self.calculate_integrity_score()
}
}
return report
def visualize_network_topology(self):
"""Create interactive visualization of network topology."""
import networkx as nx
import plotly.graph_objects as go
# Create network graph
G = nx.Graph()
# Add nodes
for node_id, node_info in self.active_nodes.items():
G.add_node(node_id, **node_info)
# Add edges (connections)
for connection in self.active_connections:
G.add_edge(
connection.node_a,
connection.node_b,
weight=connection.strength
)
# Calculate layout
pos = nx.spring_layout(G)
# Create visualization
node_trace = go.Scatter(
x=[pos[node][0] for node in G.nodes()],
y=[pos[node][1] for node in G.nodes()],
mode='markers+text',
text=[node for node in G.nodes()],
textposition="middle center",
hovertemplate="<b>%{text}</b><br>Connections: %{marker.size}<extra></extra>",
marker=dict(
size=[G.degree(node) * 3 for node in G.nodes()],
color=[G.degree(node) for node in G.nodes()],
colorscale='Viridis',
showscale=True
)
)
return {"nodes": node_trace, "layout": pos}
# Create analytics dashboard
analytics = FederationAnalytics()
health_report = analytics.generate_network_health_report()
network_viz = analytics.visualize_network_topology()
The federated learning system in Q-Memetic AI enables secure, privacy-preserving collaboration across distributed research networks while maintaining high performance and reliability through advanced consensus mechanisms and optimization techniques.