Skip to content

Federated Learning

Distributed memetic computing across multiple nodes and organizations.

Overview

Q-Memetic AI's federated learning system enables collaborative memetic computing across distributed networks while preserving data privacy and organizational boundaries. This allows multiple institutions to benefit from collective intelligence without sharing sensitive data.

Federated Architecture

Network Topology

The federated system operates as a peer-to-peer network with optional coordination nodes:

graph TB
    A[Coordinator Node] --> B[Research Institution A]
    A --> C[Research Institution B]
    A --> D[Research Institution C]
    B --> E[Local Meme Pool A]
    C --> F[Local Meme Pool B]
    D --> G[Local Meme Pool C]
    B <--> C
    C <--> D
    B <--> D

Node Types

  • Coordinator Nodes: Facilitate discovery and coordination (optional)
  • Computing Nodes: Participate in federated evolution and sharing
  • Storage Nodes: Provide distributed meme storage
  • Gateway Nodes: Bridge different federated networks

Implementation

Setting Up a Federated Node

from qmemetic_ai.federation.client import FederatedClient
from qmemetic_ai.federation.protocols import FederatedProtocol

# Initialize federated client
fed_client = FederatedClient(
    node_id="university_research_lab",
    config={
        "discovery_port": 8080,
        "coordination_port": 8081,
        "max_peers": 20,
        "trust_threshold": 0.7,
        "privacy_level": "high",
        "bandwidth_limit": "10MB/s"
    }
)

# Configure federation protocols
protocol = FederatedProtocol(
    encryption_enabled=True,
    differential_privacy=True,
    consensus_algorithm="proof_of_contribution"
)

fed_client.set_protocol(protocol)

Network Discovery and Registration

# Register with the federated network
registration_result = await fed_client.register_with_network(
    capabilities={
        "computational_power": "high",
        "storage_capacity": "1TB",
        "specializations": ["AI", "quantum_computing", "biology"],
        "available_hours": "24/7"
    },
    contact_info={
        "organization": "University Research Lab",
        "contact_email": "federated@university.edu",
        "geographic_region": "North America"
    }
)

if registration_result["success"]:
    print(f"Registered as node: {registration_result['node_id']}")
    print(f"Network address: {registration_result['network_address']}")

Peer Discovery

# Discover other nodes in the network
peers = await fed_client.discover_peers(
    filters={
        "specializations": ["AI", "machine_learning"],
        "min_trust_score": 0.8,
        "geographic_preference": "same_region",
        "active_within_hours": 24
    }
)

print(f"Discovered {len(peers)} compatible peers:")
for peer in peers:
    print(f"  {peer.node_id}: {peer.specializations} (trust: {peer.trust_score:.2f})")

Federated Evolution

Distributed Genetic Algorithms

async def federated_evolution_session():
    """Run distributed evolution across multiple nodes."""

    # Prepare local meme population
    local_memes = [
        engine.create_meme("Local research insight A"),
        engine.create_meme("Local research insight B"),
        engine.create_meme("Local research insight C")
    ]

    # Configure federated evolution parameters
    fed_params = {
        "generations": 10,
        "migration_rate": 0.2,      # 20% of population migrates each generation
        "migration_interval": 2,     # Migrate every 2 generations
        "consensus_threshold": 0.8,  # 80% agreement for accepting mutations
        "privacy_budget": 1.0        # Differential privacy budget
    }

    # Start federated evolution
    evolution_session = await fed_client.start_federated_evolution(
        local_population=local_memes,
        parameters=fed_params,
        participating_nodes=selected_peers
    )

    # Monitor evolution progress
    async for generation_result in evolution_session:
        print(f"Generation {generation_result.generation}:")
        print(f"  Local fitness: {generation_result.local_fitness:.3f}")
        print(f"  Global fitness: {generation_result.global_fitness:.3f}")
        print(f"  Received memes: {len(generation_result.received_memes)}")
        print(f"  Sent memes: {len(generation_result.sent_memes)}")

    return evolution_session.final_population

# Run federated evolution
evolved_population = await federated_evolution_session()

Migration Strategies

class MigrationStrategy:
    """Manage meme migration between federated nodes."""

    def __init__(self, strategy_type="fitness_based"):
        self.strategy_type = strategy_type
        self.migration_history = []

    def select_migrants(self, population, migration_rate=0.2):
        """Select memes for migration to other nodes."""
        num_migrants = int(len(population) * migration_rate)

        if self.strategy_type == "fitness_based":
            # Migrate highest fitness memes
            sorted_pop = sorted(population, key=lambda m: m.fitness, reverse=True)
            migrants = sorted_pop[:num_migrants]

        elif self.strategy_type == "diversity_based":
            # Migrate most diverse memes
            migrants = self.select_diverse_memes(population, num_migrants)

        elif self.strategy_type == "random":
            # Random migration
            migrants = random.sample(population, num_migrants)

        elif self.strategy_type == "novelty_based":
            # Migrate novel memes that might be valuable elsewhere
            migrants = self.select_novel_memes(population, num_migrants)

        return migrants

    def receive_migrants(self, local_population, incoming_memes):
        """Integrate incoming memes into local population."""
        # Apply privacy filters
        filtered_memes = self.apply_privacy_filters(incoming_memes)

        # Validate memes for compatibility
        validated_memes = self.validate_incoming_memes(filtered_memes)

        # Integrate into local population
        integrated_population = self.integrate_memes(local_population, validated_memes)

        return integrated_population

# Use migration strategy
migration_strategy = MigrationStrategy(strategy_type="diversity_based")
fed_client.set_migration_strategy(migration_strategy)

Privacy-Preserving Techniques

Differential Privacy

class DifferentialPrivacyManager:
    """Implement differential privacy for federated learning."""

    def __init__(self, epsilon=1.0, delta=1e-5):
        self.epsilon = epsilon  # Privacy budget
        self.delta = delta      # Failure probability
        self.noise_scale = 1.0 / epsilon

    def add_noise_to_meme(self, meme):
        """Add calibrated noise to preserve privacy."""
        # Clone meme to avoid modifying original
        private_meme = meme.copy()

        # Add noise to numerical features
        if hasattr(private_meme, 'vector'):
            noise = np.random.laplace(0, self.noise_scale, len(private_meme.vector))
            private_meme.vector = private_meme.vector + noise

        # Add noise to metadata
        if hasattr(private_meme.metadata, 'fitness'):
            noise = np.random.laplace(0, self.noise_scale)
            private_meme.metadata.fitness += noise

        return private_meme

    def privacy_budget_check(self, requested_operations):
        """Check if privacy budget allows requested operations."""
        total_cost = sum(op.privacy_cost for op in requested_operations)
        return total_cost <= self.epsilon

    def aggregate_with_privacy(self, local_gradients, global_model):
        """Aggregate model updates with differential privacy."""
        # Add noise to gradients before aggregation
        noisy_gradients = []
        for gradient in local_gradients:
            noise = np.random.laplace(0, self.noise_scale, gradient.shape)
            noisy_gradients.append(gradient + noise)

        # Aggregate noisy gradients
        aggregated_gradient = np.mean(noisy_gradients, axis=0)

        # Update global model
        updated_model = global_model + aggregated_gradient
        return updated_model

# Apply differential privacy
privacy_manager = DifferentialPrivacyManager(epsilon=1.0)
fed_client.set_privacy_manager(privacy_manager)

Secure Multi-Party Computation

class SecureComputationProtocol:
    """Implement secure multi-party computation for federated operations."""

    def __init__(self, num_parties, threshold=None):
        self.num_parties = num_parties
        self.threshold = threshold or (num_parties // 2 + 1)
        self.secret_shares = {}

    def secret_share(self, value, party_id):
        """Create secret shares of a value."""
        # Generate random polynomial coefficients
        coefficients = [value] + [random.randint(0, 2**31 - 1) for _ in range(self.threshold - 1)]

        # Generate shares for each party
        shares = {}
        for i in range(1, self.num_parties + 1):
            share_value = sum(coeff * (i ** j) for j, coeff in enumerate(coefficients)) % (2**31)
            shares[i] = share_value

        return shares

    def reconstruct_secret(self, shares):
        """Reconstruct secret from shares using Lagrange interpolation."""
        if len(shares) < self.threshold:
            raise ValueError("Insufficient shares for reconstruction")

        # Lagrange interpolation at x=0
        secret = 0
        for i, (x_i, y_i) in enumerate(shares.items()):
            # Calculate Lagrange basis polynomial
            basis = 1
            for j, (x_j, _) in enumerate(shares.items()):
                if i != j:
                    basis *= (-x_j) / (x_i - x_j)
            secret += y_i * basis

        return int(secret) % (2**31)

    def secure_aggregation(self, local_values, participant_ids):
        """Perform secure aggregation of values from multiple parties."""
        # Each party creates secret shares of their value
        all_shares = {}
        for party_id, value in zip(participant_ids, local_values):
            shares = self.secret_share(value, party_id)
            all_shares[party_id] = shares

        # Aggregate shares
        aggregated_shares = {}
        for party_id in participant_ids:
            aggregated_shares[party_id] = sum(
                shares[party_id] for shares in all_shares.values()
            )

        # Reconstruct aggregated result
        aggregated_result = self.reconstruct_secret(aggregated_shares)
        return aggregated_result

# Use secure computation
secure_protocol = SecureComputationProtocol(num_parties=5)
fed_client.set_secure_protocol(secure_protocol)

Consensus Mechanisms

Proof of Contribution

class ProofOfContribution:
    """Consensus mechanism based on computational contributions."""

    def __init__(self):
        self.contribution_history = {}
        self.reputation_scores = {}

    def calculate_contribution_score(self, node_id, contributions):
        """Calculate contribution score for a node."""
        score = 0.0

        # Computational contribution (CPU hours, evolution cycles)
        computational_score = contributions.get("computational_hours", 0) * 0.3

        # Data contribution (unique memes, dataset size)
        data_score = contributions.get("unique_memes", 0) * 0.2

        # Quality contribution (meme fitness improvements)
        quality_score = contributions.get("fitness_improvements", 0) * 0.3

        # Network contribution (peer connections, uptime)
        network_score = contributions.get("network_uptime", 0) * 0.2

        total_score = computational_score + data_score + quality_score + network_score

        # Update historical contribution
        if node_id not in self.contribution_history:
            self.contribution_history[node_id] = []
        self.contribution_history[node_id].append(total_score)

        return total_score

    def update_reputation(self, node_id, contribution_score):
        """Update node reputation based on contributions."""
        current_reputation = self.reputation_scores.get(node_id, 0.5)

        # Exponential moving average for reputation
        alpha = 0.1  # Learning rate
        new_reputation = alpha * contribution_score + (1 - alpha) * current_reputation

        self.reputation_scores[node_id] = max(0.0, min(1.0, new_reputation))

        return self.reputation_scores[node_id]

    def select_validators(self, num_validators=5):
        """Select validator nodes based on reputation and contribution."""
        # Sort nodes by reputation score
        sorted_nodes = sorted(
            self.reputation_scores.items(),
            key=lambda x: x[1],
            reverse=True
        )

        # Select top contributors as validators
        validators = [node_id for node_id, _ in sorted_nodes[:num_validators]]
        return validators

# Implement proof of contribution
poc_consensus = ProofOfContribution()
fed_client.set_consensus_mechanism(poc_consensus)

Byzantine Fault Tolerance

class ByzantineFaultTolerantConsensus:
    """BFT consensus for federated memetic computing."""

    def __init__(self, num_nodes, max_byzantine_nodes=None):
        self.num_nodes = num_nodes
        self.max_byzantine_nodes = max_byzantine_nodes or (num_nodes - 1) // 3
        self.view_number = 0
        self.sequence_number = 0
        self.message_log = []

    async def propose_meme_update(self, meme_update, proposer_id):
        """Propose a meme update using PBFT protocol."""
        proposal = {
            "type": "prepare",
            "view": self.view_number,
            "sequence": self.sequence_number,
            "meme_update": meme_update,
            "proposer": proposer_id,
            "timestamp": time.time()
        }

        # Phase 1: Prepare
        prepare_responses = await self.broadcast_prepare(proposal)

        if len(prepare_responses) >= 2 * self.max_byzantine_nodes + 1:
            # Phase 2: Commit
            commit_responses = await self.broadcast_commit(proposal)

            if len(commit_responses) >= 2 * self.max_byzantine_nodes + 1:
                # Apply meme update
                await self.apply_meme_update(meme_update)
                self.sequence_number += 1
                return True

        return False

    async def validate_meme_update(self, meme_update):
        """Validate proposed meme update."""
        validation_checks = [
            self.check_meme_integrity(meme_update),
            self.check_fitness_improvement(meme_update),
            self.check_privacy_compliance(meme_update),
            self.check_consensus_rules(meme_update)
        ]

        return all(validation_checks)

# Use Byzantine fault tolerance
bft_consensus = ByzantineFaultTolerantConsensus(num_nodes=10)
fed_client.set_bft_consensus(bft_consensus)

Federated Learning Applications

Cross-Domain Knowledge Transfer

async def cross_domain_transfer():
    """Transfer knowledge between different research domains."""

    # Define source and target domains
    source_domain = "computer_science"
    target_domain = "biology"

    # Find domain-specific federated nodes
    source_nodes = await fed_client.find_nodes_by_domain(source_domain)
    target_nodes = await fed_client.find_nodes_by_domain(target_domain)

    # Create transfer learning session
    transfer_session = await fed_client.create_transfer_session(
        source_nodes=source_nodes,
        target_nodes=target_nodes,
        transfer_method="domain_adaptation"
    )

    # Extract transferable knowledge patterns
    transferable_patterns = await transfer_session.extract_patterns(
        min_relevance=0.6,
        max_domain_gap=0.8
    )

    print(f"Found {len(transferable_patterns)} transferable patterns")

    # Apply domain adaptation
    adapted_patterns = await transfer_session.adapt_patterns(
        patterns=transferable_patterns,
        target_domain_context=target_domain
    )

    return adapted_patterns

# Execute cross-domain transfer
transferred_knowledge = await cross_domain_transfer()

Collaborative Research Networks

class ResearchCollaboration:
    """Facilitate collaborative research through federated networks."""

    def __init__(self, research_topic):
        self.research_topic = research_topic
        self.participating_institutions = []
        self.shared_hypotheses = []
        self.collaborative_experiments = []

    async def form_research_consortium(self, topic_keywords):
        """Form consortium of institutions researching similar topics."""
        # Find institutions with relevant expertise
        relevant_nodes = await fed_client.search_nodes(
            keywords=topic_keywords,
            expertise_threshold=0.7
        )

        # Send collaboration invitations
        invitations = []
        for node in relevant_nodes:
            invitation = await self.send_collaboration_invite(
                node_id=node.node_id,
                research_topic=self.research_topic,
                proposed_contributions=self.define_contributions(node)
            )
            invitations.append(invitation)

        # Process responses
        confirmed_participants = []
        for invitation in invitations:
            response = await invitation.get_response(timeout=7200)  # 2 hours
            if response.accepted:
                confirmed_participants.append(response.node_id)

        self.participating_institutions = confirmed_participants
        return confirmed_participants

    async def collaborative_hypothesis_generation(self):
        """Generate research hypotheses collaboratively."""
        # Collect local hypotheses from each institution
        local_hypotheses = []
        for institution in self.participating_institutions:
            hypotheses = await fed_client.request_hypotheses(
                node_id=institution,
                research_topic=self.research_topic
            )
            local_hypotheses.extend(hypotheses)

        # Merge and evolve hypotheses collaboratively
        merged_hypotheses = await self.merge_hypotheses(local_hypotheses)
        evolved_hypotheses = await fed_client.collaborative_evolution(
            population=merged_hypotheses,
            participants=self.participating_institutions,
            generations=5
        )

        self.shared_hypotheses = evolved_hypotheses
        return evolved_hypotheses

    async def distribute_experiments(self, experiment_designs):
        """Distribute experiments across participating institutions."""
        experiment_assignments = {}

        for experiment in experiment_designs:
            # Find best-suited institution for each experiment
            best_match = await self.find_best_institution(
                experiment=experiment,
                criteria=["expertise", "resources", "availability"]
            )

            if best_match:
                experiment_assignments[experiment.id] = best_match
                await self.assign_experiment(experiment, best_match)

        return experiment_assignments

# Create research collaboration
collaboration = ResearchCollaboration("AI safety in autonomous systems")
consortium = await collaboration.form_research_consortium(
    ["AI safety", "autonomous systems", "ethical AI"]
)

Performance Optimization

Load Balancing

class FederatedLoadBalancer:
    """Balance computational load across federated nodes."""

    def __init__(self):
        self.node_capacities = {}
        self.current_loads = {}
        self.load_history = {}

    def update_node_capacity(self, node_id, capacity_info):
        """Update node capacity information."""
        self.node_capacities[node_id] = {
            "cpu_cores": capacity_info["cpu_cores"],
            "memory_gb": capacity_info["memory_gb"],
            "storage_gb": capacity_info["storage_gb"],
            "network_bandwidth": capacity_info["network_bandwidth"],
            "gpu_available": capacity_info.get("gpu_available", False)
        }

    def calculate_load_score(self, node_id):
        """Calculate current load score for a node."""
        if node_id not in self.current_loads:
            return 0.0

        load = self.current_loads[node_id]
        capacity = self.node_capacities.get(node_id, {})

        if not capacity:
            return 1.0  # Unknown capacity, assume fully loaded

        # Calculate relative load
        cpu_load = load.get("cpu_usage", 0) / capacity.get("cpu_cores", 1)
        memory_load = load.get("memory_usage", 0) / capacity.get("memory_gb", 1)

        # Weighted average
        load_score = 0.6 * cpu_load + 0.4 * memory_load
        return min(load_score, 1.0)

    def select_optimal_nodes(self, task_requirements, num_nodes=3):
        """Select optimal nodes for task distribution."""
        candidate_nodes = []

        for node_id, capacity in self.node_capacities.items():
            # Check if node meets requirements
            if self.meets_requirements(capacity, task_requirements):
                load_score = self.calculate_load_score(node_id)
                suitability_score = self.calculate_suitability(capacity, task_requirements)

                combined_score = 0.7 * (1 - load_score) + 0.3 * suitability_score
                candidate_nodes.append((node_id, combined_score))

        # Sort by combined score and select top nodes
        candidate_nodes.sort(key=lambda x: x[1], reverse=True)
        selected_nodes = [node_id for node_id, _ in candidate_nodes[:num_nodes]]

        return selected_nodes

# Implement load balancing
load_balancer = FederatedLoadBalancer()
fed_client.set_load_balancer(load_balancer)

Bandwidth Optimization

class BandwidthOptimizer:
    """Optimize network bandwidth usage in federated operations."""

    def __init__(self):
        self.compression_algorithms = ["gzip", "lz4", "zstd"]
        self.bandwidth_monitors = {}

    def compress_meme_data(self, meme_data, algorithm="zstd"):
        """Compress meme data for efficient transmission."""
        import zstandard as zstd

        if algorithm == "zstd":
            compressor = zstd.ZstdCompressor()
            compressed_data = compressor.compress(meme_data.encode())
        elif algorithm == "gzip":
            import gzip
            compressed_data = gzip.compress(meme_data.encode())
        elif algorithm == "lz4":
            import lz4.frame
            compressed_data = lz4.frame.compress(meme_data.encode())

        compression_ratio = len(meme_data) / len(compressed_data)
        return compressed_data, compression_ratio

    def adaptive_batch_sizing(self, available_bandwidth, data_size):
        """Adaptively determine optimal batch size for data transmission."""
        # Target transmission time: 10 seconds per batch
        target_time = 10.0  # seconds

        # Calculate optimal batch size
        optimal_batch_size = int(available_bandwidth * target_time)

        # Ensure batch size is reasonable
        min_batch_size = 1024  # 1 KB
        max_batch_size = 10 * 1024 * 1024  # 10 MB

        batch_size = max(min_batch_size, min(optimal_batch_size, max_batch_size))

        # Calculate number of batches
        num_batches = (data_size + batch_size - 1) // batch_size

        return batch_size, num_batches

    def prioritize_data_transmission(self, data_queue):
        """Prioritize data transmission based on importance."""
        # Priority factors
        priorities = {
            "critical_updates": 1.0,
            "evolution_results": 0.8,
            "meme_migrations": 0.6,
            "routine_sync": 0.4,
            "backup_data": 0.2
        }

        # Sort queue by priority
        prioritized_queue = sorted(
            data_queue,
            key=lambda item: priorities.get(item.type, 0.3),
            reverse=True
        )

        return prioritized_queue

# Use bandwidth optimization
bandwidth_optimizer = BandwidthOptimizer()
fed_client.set_bandwidth_optimizer(bandwidth_optimizer)

Monitoring and Analytics

Federation Analytics Dashboard

class FederationAnalytics:
    """Analytics and monitoring for federated operations."""

    def __init__(self):
        self.metrics_collector = MetricsCollector()
        self.performance_tracker = PerformanceTracker()

    def generate_network_health_report(self):
        """Generate comprehensive network health report."""
        report = {
            "network_overview": {
                "total_nodes": len(self.active_nodes),
                "online_nodes": len(self.get_online_nodes()),
                "network_uptime": self.calculate_network_uptime(),
                "average_latency": self.calculate_average_latency()
            },
            "evolution_performance": {
                "completed_sessions": self.count_completed_sessions(),
                "average_convergence_time": self.calculate_convergence_time(),
                "fitness_improvements": self.calculate_fitness_improvements(),
                "successful_migrations": self.count_successful_migrations()
            },
            "resource_utilization": {
                "total_cpu_hours": self.sum_cpu_usage(),
                "total_bandwidth_used": self.sum_bandwidth_usage(),
                "storage_efficiency": self.calculate_storage_efficiency(),
                "cost_effectiveness": self.calculate_cost_effectiveness()
            },
            "security_metrics": {
                "privacy_violations": self.count_privacy_violations(),
                "consensus_failures": self.count_consensus_failures(),
                "byzantine_incidents": self.count_byzantine_incidents(),
                "data_integrity_score": self.calculate_integrity_score()
            }
        }

        return report

    def visualize_network_topology(self):
        """Create interactive visualization of network topology."""
        import networkx as nx
        import plotly.graph_objects as go

        # Create network graph
        G = nx.Graph()

        # Add nodes
        for node_id, node_info in self.active_nodes.items():
            G.add_node(node_id, **node_info)

        # Add edges (connections)
        for connection in self.active_connections:
            G.add_edge(
                connection.node_a,
                connection.node_b,
                weight=connection.strength
            )

        # Calculate layout
        pos = nx.spring_layout(G)

        # Create visualization
        node_trace = go.Scatter(
            x=[pos[node][0] for node in G.nodes()],
            y=[pos[node][1] for node in G.nodes()],
            mode='markers+text',
            text=[node for node in G.nodes()],
            textposition="middle center",
            hovertemplate="<b>%{text}</b><br>Connections: %{marker.size}<extra></extra>",
            marker=dict(
                size=[G.degree(node) * 3 for node in G.nodes()],
                color=[G.degree(node) for node in G.nodes()],
                colorscale='Viridis',
                showscale=True
            )
        )

        return {"nodes": node_trace, "layout": pos}

# Create analytics dashboard
analytics = FederationAnalytics()
health_report = analytics.generate_network_health_report()
network_viz = analytics.visualize_network_topology()

The federated learning system in Q-Memetic AI enables secure, privacy-preserving collaboration across distributed research networks while maintaining high performance and reliability through advanced consensus mechanisms and optimization techniques.