Skip to content

Examples

Explore real-world applications of Q-Memetic AI through comprehensive examples. Each example includes complete code, explanations, and expected outcomes.

🧬 Basic Evolution Examples

Simple Text Evolution

Transform a simple idea through genetic evolution:

from qmemetic_ai import MemeticEngine

# Initialize engine
engine = MemeticEngine()

# Create initial meme
initial_idea = "Renewable energy is important"
meme = engine.create_meme(
    content=initial_idea,
    author="researcher",
    domain="environment"
)

# Evolve over multiple generations
evolved_memes = engine.evolve(
    memes=[meme],
    generations=10,
    population_size=30,
    mutation_rate=0.3,
    crossover_rate=0.7
)

# Show evolution progression
print("Evolution Results:")
for i, evolved in enumerate(evolved_memes[:5]):
    print(f"{i+1}. Gen {evolved.metadata.generation}: {evolved.content}")
    print(f"   Fitness: {evolved.vector.fitness_score:.3f}")
    print()

Expected Output:

Evolution Results:
1. Gen 5: Solar and wind energy are crucial for sustainable development
   Fitness: 0.847

2. Gen 7: Renewable energy technologies will revolutionize global power systems
   Fitness: 0.823

3. Gen 4: Clean energy is essential for combating climate change effectively
   Fitness: 0.798

Multi-Domain Evolution

Evolve memes across different knowledge domains:

# Create memes in different domains
memes = [
    engine.create_meme("AI will transform healthcare", domain="technology"),
    engine.create_meme("Personalized medicine is the future", domain="medicine"),
    engine.create_meme("Data privacy is fundamental", domain="ethics")
]

# Cross-pollinate ideas between domains
evolved_memes = engine.evolve(
    memes=memes,
    generations=8,
    allow_cross_domain=True,
    population_size=25
)

# Analyze domain mixing
for meme in evolved_memes:
    domains = meme.metadata.domain_influences
    print(f"Content: {meme.content[:60]}...")
    print(f"Domain mix: {domains}")
    print()

🔗 Entanglement Network Examples

Building Semantic Networks

Create networks of related concepts:

# Create a knowledge base of related memes
knowledge_memes = [
    engine.create_meme("Machine learning algorithms learn from data", tags=["ML", "data"]),
    engine.create_meme("Neural networks mimic brain structure", tags=["neural", "brain"]),
    engine.create_meme("Deep learning uses multiple layers", tags=["deep", "layers"]),
    engine.create_meme("AI can recognize patterns in images", tags=["AI", "vision"]),
    engine.create_meme("Natural language processing understands text", tags=["NLP", "text"])
]

# Create entanglement network
network = engine.entangle()

# Analyze semantic relationships
for meme_id, connections in network['entanglements'].items():
    meme = engine.get_meme(meme_id)
    print(f"Meme: {meme.content[:40]}...")
    print(f"Connected to {len(connections)} other memes:")

    for connected_id, strength in connections[:3]:  # Top 3 connections
        connected_meme = engine.get_meme(connected_id)
        print(f"  → {connected_meme.content[:30]}... (strength: {strength:.3f})")
    print()

Quantum Walk Exploration

Explore idea networks through quantum walks:

# Start quantum walk from a specific meme
start_meme = knowledge_memes[0]
walk_path = engine.quantum_walk(
    start_meme=start_meme.meme_id,
    steps=20,
    teleport_probability=0.15
)

# Analyze the walk pattern
print("Quantum Walk Path:")
visited_concepts = []
for step, meme_id in enumerate(walk_path):
    meme = engine.get_meme(meme_id)
    concept = meme.content[:40] + "..."
    if concept not in visited_concepts:
        visited_concepts.append(concept)
        print(f"Step {step}: {concept}")

print(f"\nVisited {len(visited_concepts)} unique concepts")

🌐 Federated Learning Examples

Distributed Meme Evolution

Coordinate evolution across multiple nodes:

# Initialize federated engine
fed_engine = MemeticEngine(
    federated_mode=True,
    federation_config={
        "node_id": "research_lab_1",
        "discovery_port": 8080
    }
)

# Create local memes
local_memes = [
    fed_engine.create_meme("Quantum computing breakthrough", author="lab1"),
    fed_engine.create_meme("New optimization algorithm", author="lab1")
]

# Synchronize with network
async def federated_evolution():
    # Share memes with network
    await fed_engine.federated_sync(mode="push")

    # Get memes from other nodes
    received_memes = await fed_engine.federated_sync(mode="pull")

    # Evolve combined pool
    all_memes = local_memes + received_memes
    evolved = fed_engine.evolve(all_memes, generations=5)

    # Share evolved results
    await fed_engine.federated_sync(mode="bidirectional")

    return evolved

# Run federated evolution
import asyncio
evolved_memes = asyncio.run(federated_evolution())

🎨 Visualization Examples

Interactive Noosphere Map

Create rich visualizations of your memetic ecosystem:

# Create diverse meme population
memes = []
domains = ["science", "art", "philosophy", "technology"]
for domain in domains:
    for i in range(5):
        meme = engine.create_meme(
            content=f"Innovative {domain} concept #{i+1}",
            domain=domain,
            author=f"{domain}_expert"
        )
        memes.append(meme)

# Create entanglement network
network = engine.entangle()

# Generate interactive visualization
viz_path = engine.visualize_noosphere(
    network_data=network,
    layout="force_directed",
    color_by="domain",
    size_by="fitness",
    show_labels=True,
    interactive=True,
    save_path="noosphere_map.html"
)

print(f"Interactive map saved to: {viz_path}")

Evolution Timeline

Visualize how memes evolve over time:

# Track evolution with detailed history
evolution_history = engine.evolve(
    memes=[engine.create_meme("Original idea")],
    generations=10,
    track_history=True,
    population_size=20
)

# Create timeline visualization
timeline_path = engine.visualizer.create_evolution_timeline(
    evolution_data=evolution_history,
    show_fitness_curves=True,
    show_generation_trees=True,
    save_path="evolution_timeline.html"
)

print(f"Evolution timeline saved to: {timeline_path}")

🧠 Cognitive Modeling Examples

Personalized Meme Adaptation

Adapt memes to individual cognitive profiles:

# Create cognitive profile
user_profile = engine.create_cognitive_profile(
    user_id="researcher_123",
    preferences={
        "technical_level": 0.8,
        "domain_interests": ["AI", "quantum", "biology"],
        "communication_style": "formal",
        "complexity_preference": 0.7
    }
)

# Create and adapt memes for this user
original_meme = engine.create_meme(
    "Machine learning models can be trained on quantum computers"
)

adapted_meme = engine.adapt_for_user(
    meme=original_meme,
    user_profile=user_profile
)

print("Original:", original_meme.content)
print("Adapted:", adapted_meme.content)
print("Adaptation score:", adapted_meme.cognitive_fit_score)

Multi-User Cognitive Evolution

Evolve memes through multiple cognitive filters:

# Create multiple user profiles
users = [
    engine.create_cognitive_profile("expert", {"technical_level": 0.9}),
    engine.create_cognitive_profile("student", {"technical_level": 0.3}),
    engine.create_cognitive_profile("general", {"technical_level": 0.5})
]

# Evolve meme through different cognitive lenses
meme = engine.create_meme("Artificial intelligence systems")

for user in users:
    evolved = engine.cognitive_evolution(
        meme=meme,
        user_profile=user,
        generations=3
    )
    print(f"For {user.user_id}: {evolved.content}")

📊 Analytics Examples

Comprehensive Meme Analysis

Deep dive into meme properties and relationships:

# Create and analyze a meme
meme = engine.create_meme(
    content="Quantum entanglement enables instant communication",
    author="physicist",
    domain="quantum_physics",
    tags=["quantum", "entanglement", "communication"]
)

# Get detailed analytics
analytics = engine.get_meme_analytics(meme.meme_id)

print("=== Meme Analytics ===")
print(f"Fitness Score: {analytics['fitness']['overall']:.3f}")
print(f"Semantic Coherence: {analytics['fitness']['semantic_coherence']:.3f}")
print(f"Novelty Score: {analytics['fitness']['novelty']:.3f}")
print(f"Domain Relevance: {analytics['fitness']['domain_relevance']:.3f}")

print(f"\nNetwork Position:")
print(f"Centrality: {analytics['network']['centrality']:.3f}")
print(f"Connected Memes: {len(analytics['network']['neighbors'])}")

print(f"\nEvolution Potential:")
print(f"Mutation Susceptibility: {analytics['evolution']['mutation_rate']:.3f}")
print(f"Crossover Compatibility: {analytics['evolution']['crossover_rate']:.3f}")

System-Wide Metrics

Monitor the health of your memetic ecosystem:

# Get comprehensive system status
status = engine.get_system_status()

print("=== System Health ===")
print(f"Total Memes: {status['data_metrics']['total_memes']}")
print(f"Network Density: {status['network_health']['graph_density']:.3f}")
print(f"Average Fitness: {status['data_metrics']['average_fitness']:.3f}")
print(f"Connected Components: {status['network_health']['connected_components']}")

# Analyze evolution trends
trends = engine.analyze_evolution_trends()
print(f"\n=== Evolution Trends ===")
print(f"Fitness Improvement Rate: {trends['fitness_improvement']:.3f}")
print(f"Diversity Index: {trends['diversity_index']:.3f}")
print(f"Innovation Rate: {trends['innovation_rate']:.3f}")

🛠️ Advanced Configuration Examples

Custom Evolution Parameters

Fine-tune the evolution process:

from qmemetic_ai.core.evolution import EvolutionParameters

# Create custom evolution parameters
custom_params = EvolutionParameters(
    mutation_rate=0.4,
    crossover_rate=0.8,
    selection_pressure=0.6,
    elitism_ratio=0.1,
    diversity_weight=0.3,
    fitness_function="custom",
    population_dynamics="variable"
)

# Run evolution with custom parameters
evolved_memes = engine.evolve(
    memes=initial_memes,
    generations=15,
    evolution_params=custom_params
)

Performance Optimization

Optimize for large-scale operations:

# Configure for high performance
engine = MemeticEngine(
    license_key="your-key",
    performance_config={
        "max_memory": 16000,  # MB
        "parallel_workers": 8,
        "gpu_acceleration": True,
        "batch_size": 1000,
        "cache_size": 5000
    }
)

# Batch process multiple memes
batch_memes = [
    engine.create_meme(f"Idea #{i}", batch_mode=True) 
    for i in range(1000)
]

# Efficient batch evolution
results = engine.batch_evolve(
    meme_batches=batch_memes,
    batch_size=100,
    generations=5
)

🔍 Debugging Examples

Evolution Debugging

Track what happens during evolution:

# Enable debug mode
engine.set_debug_mode(True)

# Run evolution with detailed logging
evolved = engine.evolve(
    memes=[initial_meme],
    generations=5,
    debug_callbacks={
        "on_generation_start": lambda g: print(f"Starting generation {g}"),
        "on_mutation": lambda m: print(f"Mutated: {m.content[:30]}..."),
        "on_crossover": lambda p1, p2, c: print(f"Crossover created: {c.content[:30]}..."),
        "on_selection": lambda selected: print(f"Selected {len(selected)} memes")
    }
)

Network Analysis

Debug entanglement relationships:

# Analyze network structure
network = engine.entangle()

# Find isolated nodes
isolated = engine.find_isolated_memes()
print(f"Isolated memes: {len(isolated)}")

# Find highly connected hubs
hubs = engine.find_network_hubs(min_connections=5)
print(f"Hub memes: {len(hubs)}")

# Detect communities
communities = engine.detect_meme_communities()
print(f"Found {len(communities)} communities")
for i, community in enumerate(communities):
    print(f"Community {i}: {len(community)} memes")

📈 Next Steps

These examples demonstrate the power and flexibility of Q-Memetic AI. To go deeper:

  1. Theory Guide - Understand the algorithms
  2. API Reference - Complete method documentation
  3. Performance Guide - Optimization techniques
  4. Advanced Guide - Enterprise features

Ready to build your own memetic applications? Check out our development guide!