Skip to content

Cognitive Models

Advanced user modeling and personalization through cognitive fingerprinting.

Overview

Q-Memetic AI's cognitive modeling system creates detailed psychological and behavioral profiles of users to enable highly personalized memetic experiences. The system learns from user interactions to build comprehensive cognitive fingerprints.

Cognitive Fingerprinting

Core Concepts

A cognitive fingerprint captures:

  • Learning preferences: Visual, auditory, kinesthetic preferences
  • Cognitive load tolerance: Complexity handling capabilities
  • Attention patterns: Focus duration and switching behaviors
  • Emotional responses: Valence and arousal patterns
  • Domain expertise: Knowledge levels across different fields
  • Communication style: Formal, casual, technical preferences

Mathematical Foundation

The cognitive fingerprint is represented as a multi-dimensional vector:

F_user = [
    learning_style,     # [0,1]³ for VAK preferences
    complexity_pref,    # [0,1] complexity tolerance
    attention_span,     # R⁺ in minutes
    emotional_profile,  # [0,1]² for valence/arousal
    domain_expertise,   # [0,1]ⁿ for n domains
    communication_style # categorical encoding
]

Implementation

Creating Cognitive Profiles

from qmemetic_ai.cognitive.models import CognitiveFingerprint

# Initialize with basic preferences
profile = CognitiveFingerprint(
    user_id="researcher_001",
    preferences={
        "learning_style": {
            "visual": 0.7,
            "auditory": 0.2,
            "kinesthetic": 0.1
        },
        "complexity_tolerance": 0.8,
        "domain_expertise": {
            "artificial_intelligence": 0.9,
            "quantum_physics": 0.6,
            "biology": 0.3,
            "literature": 0.4
        },
        "communication_style": "technical",
        "attention_span_minutes": 45,
        "emotional_baseline": {
            "valence": 0.6,    # Positive emotional baseline
            "arousal": 0.4     # Moderate activation level
        }
    }
)

Adaptive Learning

The system continuously updates cognitive profiles based on user interactions:

# Track user interaction
interaction_data = {
    "content_consumed": "Advanced neural network architectures",
    "engagement_time": 12.5,  # minutes
    "comprehension_score": 0.85,
    "difficulty_rating": 0.7,
    "emotional_response": {
        "valence": 0.8,
        "arousal": 0.6
    },
    "follow_up_actions": ["bookmark", "share", "deep_dive"]
}

# Update cognitive profile
profile.update_from_interaction(interaction_data)
print(f"Updated complexity tolerance: {profile.complexity_tolerance:.3f}")

Meme Personalization

# Create personalized meme recommendations
base_meme = engine.create_meme("Quantum machine learning applications")

# Adapt meme for specific user
personalized_meme = profile.personalize_meme(
    meme=base_meme,
    adaptation_strength=0.8
)

print(f"Original: {base_meme.content}")
print(f"Personalized: {personalized_meme.content}")
print(f"Estimated engagement: {personalized_meme.engagement_score:.3f}")

Cognitive Adaptation Algorithms

Learning Style Adaptation

def adapt_for_learning_style(content, learning_preferences):
    """Adapt content based on learning style preferences."""
    adapted_content = {
        "base_content": content,
        "visual_elements": [],
        "auditory_elements": [],
        "kinesthetic_elements": []
    }

    if learning_preferences["visual"] > 0.5:
        adapted_content["visual_elements"] = [
            "Generate concept diagrams",
            "Include flowcharts and infographics",
            "Use color coding for key concepts"
        ]

    if learning_preferences["auditory"] > 0.5:
        adapted_content["auditory_elements"] = [
            "Provide audio narration",
            "Include musical mnemonics",
            "Suggest discussion groups"
        ]

    if learning_preferences["kinesthetic"] > 0.5:
        adapted_content["kinesthetic_elements"] = [
            "Interactive simulations",
            "Hands-on exercises",
            "Physical modeling activities"
        ]

    return adapted_content

# Apply learning style adaptation
adapted = adapt_for_learning_style(
    content="Neural network backpropagation",
    learning_preferences=profile.learning_style
)

Complexity Calibration

def calibrate_complexity(content, user_profile):
    """Adjust content complexity for optimal comprehension."""
    base_complexity = calculate_content_complexity(content)
    user_tolerance = user_profile.complexity_tolerance

    if base_complexity > user_tolerance + 0.2:
        # Simplify content
        adapted_content = simplify_content(
            content=content,
            target_complexity=user_tolerance,
            preserve_accuracy=True
        )
    elif base_complexity < user_tolerance - 0.2:
        # Add depth and nuance
        adapted_content = enhance_content(
            content=content,
            target_complexity=user_tolerance,
            add_examples=True,
            include_edge_cases=True
        )
    else:
        adapted_content = content

    return adapted_content

# Example usage
original_content = "Machine learning uses algorithms to find patterns"
calibrated = calibrate_complexity(original_content, profile)
print(f"Calibrated content: {calibrated}")

Emotional Resonance Optimization

def optimize_emotional_resonance(content, emotional_profile):
    """Optimize content for emotional engagement."""
    target_valence = emotional_profile["valence"]
    target_arousal = emotional_profile["arousal"]

    # Analyze current emotional tone
    current_emotion = analyze_emotional_content(content)

    # Adjust emotional framing
    if target_valence > current_emotion["valence"]:
        content = add_positive_framing(content)
    elif target_valence < current_emotion["valence"]:
        content = add_balanced_perspective(content)

    if target_arousal > current_emotion["arousal"]:
        content = increase_excitement(content)
    elif target_arousal < current_emotion["arousal"]:
        content = add_calming_elements(content)

    return content

# Apply emotional optimization
emotionally_tuned = optimize_emotional_resonance(
    content="Revolutionary AI breakthrough",
    emotional_profile=profile.emotional_baseline
)

Advanced Cognitive Features

Multi-Modal Intelligence Assessment

class MultiModalIntelligence:
    """Assess and track multiple intelligence types."""

    def __init__(self):
        self.intelligence_types = {
            "linguistic": 0.0,
            "logical_mathematical": 0.0,
            "spatial": 0.0,
            "bodily_kinesthetic": 0.0,
            "musical": 0.0,
            "interpersonal": 0.0,
            "intrapersonal": 0.0,
            "naturalistic": 0.0
        }

    def assess_from_interactions(self, interaction_history):
        """Update intelligence assessments based on user interactions."""
        for interaction in interaction_history:
            content_type = interaction["content_type"]
            performance = interaction["performance_score"]

            if content_type == "text_analysis":
                self.intelligence_types["linguistic"] += performance * 0.1
            elif content_type == "mathematical_problem":
                self.intelligence_types["logical_mathematical"] += performance * 0.1
            elif content_type == "visual_pattern":
                self.intelligence_types["spatial"] += performance * 0.1
            # ... continue for other types

        # Normalize scores
        max_score = max(self.intelligence_types.values())
        for intelligence in self.intelligence_types:
            self.intelligence_types[intelligence] /= max_score

    def get_dominant_intelligences(self, threshold=0.7):
        """Identify user's strongest intelligence types."""
        return {
            intelligence: score 
            for intelligence, score in self.intelligence_types.items()
            if score >= threshold
        }

# Integrate with cognitive profile
multi_modal = MultiModalIntelligence()
profile.intelligence_assessment = multi_modal

Cognitive Load Management

class CognitiveLoadManager:
    """Manage cognitive load to prevent overload."""

    def __init__(self, baseline_capacity=1.0):
        self.baseline_capacity = baseline_capacity
        self.current_load = 0.0
        self.load_history = []

    def estimate_content_load(self, content):
        """Estimate cognitive load of content."""
        factors = {
            "complexity": calculate_complexity(content),
            "novelty": calculate_novelty(content),
            "length": len(content) / 1000,  # Normalize by character count
            "abstractness": calculate_abstractness(content)
        }

        # Weighted combination
        load = (
            0.3 * factors["complexity"] +
            0.2 * factors["novelty"] +
            0.2 * factors["length"] +
            0.3 * factors["abstractness"]
        )

        return min(load, 1.0)  # Cap at 1.0

    def can_handle_content(self, content, safety_margin=0.2):
        """Check if user can handle additional cognitive load."""
        content_load = self.estimate_content_load(content)
        available_capacity = self.baseline_capacity - self.current_load

        return content_load <= (available_capacity - safety_margin)

    def suggest_break(self):
        """Suggest break when cognitive load is high."""
        if self.current_load > 0.8:
            return {
                "suggestion": "Take a 5-10 minute break",
                "reason": "High cognitive load detected",
                "recovery_time": 10  # minutes
            }
        return None

# Integrate cognitive load management
load_manager = CognitiveLoadManager(baseline_capacity=profile.complexity_tolerance)
profile.load_manager = load_manager

Social Cognitive Modeling

class SocialCognitiveProfile:
    """Model social cognitive preferences and behaviors."""

    def __init__(self):
        self.social_preferences = {
            "collaboration_preference": 0.5,
            "competition_motivation": 0.5,
            "social_learning_style": "observational",  # observational, collaborative, independent
            "feedback_sensitivity": 0.5,
            "authority_acceptance": 0.5,
            "peer_influence": 0.5
        }
        self.social_network = []
        self.influence_weights = {}

    def update_social_context(self, social_interaction):
        """Update profile based on social interactions."""
        interaction_type = social_interaction["type"]
        outcome = social_interaction["outcome"]

        if interaction_type == "collaboration":
            if outcome == "positive":
                self.social_preferences["collaboration_preference"] += 0.05
            else:
                self.social_preferences["collaboration_preference"] -= 0.02

        # Update influence weights based on interaction success
        peer_id = social_interaction.get("peer_id")
        if peer_id:
            current_weight = self.influence_weights.get(peer_id, 0.5)
            if outcome == "positive":
                self.influence_weights[peer_id] = min(current_weight + 0.1, 1.0)
            else:
                self.influence_weights[peer_id] = max(current_weight - 0.05, 0.1)

    def recommend_social_learning(self, content):
        """Recommend social learning approaches for content."""
        recommendations = []

        if self.social_preferences["collaboration_preference"] > 0.6:
            recommendations.append("Group study session")
            recommendations.append("Peer discussion")

        if self.social_preferences["competition_motivation"] > 0.6:
            recommendations.append("Competitive quiz")
            recommendations.append("Leaderboard challenges")

        return recommendations

# Add social cognitive modeling
social_profile = SocialCognitiveProfile()
profile.social_cognitive = social_profile

Cognitive Metrics and Analytics

Performance Tracking

def track_cognitive_performance(profile, content_interactions):
    """Track cognitive performance over time."""
    metrics = {
        "learning_efficiency": [],
        "retention_rates": [],
        "engagement_scores": [],
        "complexity_progression": []
    }

    for interaction in content_interactions:
        # Calculate learning efficiency
        time_spent = interaction["time_minutes"]
        comprehension = interaction["comprehension_score"]
        efficiency = comprehension / time_spent if time_spent > 0 else 0
        metrics["learning_efficiency"].append(efficiency)

        # Track retention (requires follow-up assessment)
        if "retention_test_score" in interaction:
            metrics["retention_rates"].append(interaction["retention_test_score"])

        # Track engagement
        engagement = calculate_engagement_score(interaction)
        metrics["engagement_scores"].append(engagement)

        # Track complexity progression
        content_complexity = calculate_content_complexity(interaction["content"])
        metrics["complexity_progression"].append(content_complexity)

    return metrics

# Generate performance report
performance_metrics = track_cognitive_performance(profile, user_interactions)
print(f"Average learning efficiency: {np.mean(performance_metrics['learning_efficiency']):.3f}")
print(f"Average retention rate: {np.mean(performance_metrics['retention_rates']):.3f}")

Cognitive State Prediction

class CognitiveStatePredictor:
    """Predict user's cognitive state for optimal content delivery."""

    def __init__(self):
        self.state_model = self.load_predictive_model()
        self.state_history = []

    def predict_optimal_timing(self, content, user_profile):
        """Predict optimal time to present content."""
        features = self.extract_features(user_profile)
        predicted_states = self.state_model.predict(features)

        optimal_window = self.find_peak_receptivity(predicted_states)
        return optimal_window

    def predict_engagement(self, content, user_profile, delivery_time):
        """Predict user engagement for given content and timing."""
        content_features = self.analyze_content(content)
        user_features = self.extract_user_features(user_profile)
        temporal_features = self.extract_temporal_features(delivery_time)

        combined_features = {
            **content_features,
            **user_features,
            **temporal_features
        }

        engagement_prediction = self.state_model.predict_engagement(combined_features)
        return engagement_prediction

    def recommend_content_sequence(self, content_list, user_profile):
        """Recommend optimal sequence for presenting content."""
        scored_content = []

        for content in content_list:
            optimal_time = self.predict_optimal_timing(content, user_profile)
            engagement_score = self.predict_engagement(content, user_profile, optimal_time)

            scored_content.append({
                "content": content,
                "optimal_time": optimal_time,
                "predicted_engagement": engagement_score
            })

        # Sort by optimal timing and engagement
        return sorted(scored_content, key=lambda x: (x["optimal_time"], -x["predicted_engagement"]))

# Use cognitive state prediction
predictor = CognitiveStatePredictor()
content_sequence = predictor.recommend_content_sequence(content_list, profile)

Integration with Memetic Evolution

Cognitive-Driven Evolution

def cognitive_fitness_function(meme, cognitive_profiles):
    """Fitness function based on cognitive compatibility."""
    total_fitness = 0.0

    for profile in cognitive_profiles:
        # Calculate fit score for this cognitive profile
        fit_score = profile.calculate_fit_score(meme)

        # Weight by profile importance (e.g., user activity level)
        weight = profile.importance_weight

        total_fitness += fit_score * weight

    return total_fitness / len(cognitive_profiles)

# Use in evolution process
evolved_memes = engine.evolve(
    initial_memes=base_memes,
    fitness_function=cognitive_fitness_function,
    generations=10,
    cognitive_profiles=user_profiles
)

Personalized Mutation Operators

def cognitive_mutation(meme, cognitive_profile):
    """Mutate meme based on cognitive preferences."""
    mutation_strategies = []

    # Choose mutation based on learning style
    if cognitive_profile.learning_style["visual"] > 0.6:
        mutation_strategies.append("add_visual_metaphors")

    if cognitive_profile.learning_style["auditory"] > 0.6:
        mutation_strategies.append("add_rhythmic_structure")

    if cognitive_profile.complexity_tolerance > 0.7:
        mutation_strategies.append("increase_technical_depth")
    else:
        mutation_strategies.append("simplify_language")

    # Apply selected mutations
    mutated_meme = meme.copy()
    for strategy in mutation_strategies:
        mutated_meme = apply_mutation_strategy(mutated_meme, strategy)

    return mutated_meme

Privacy and Ethics

Data Protection

class CognitivePrivacyManager:
    """Manage privacy for cognitive profile data."""

    def __init__(self):
        self.encryption_key = self.generate_encryption_key()
        self.anonymization_level = "high"

    def anonymize_profile(self, profile):
        """Remove personally identifiable information."""
        anonymized = profile.copy()
        anonymized.user_id = self.generate_anonymous_id()
        anonymized.remove_pii()
        return anonymized

    def differential_privacy(self, profile_data, epsilon=1.0):
        """Apply differential privacy to profile data."""
        # Add calibrated noise to protect individual privacy
        noise_scale = 1.0 / epsilon

        for key, value in profile_data.items():
            if isinstance(value, (int, float)):
                noise = np.random.laplace(0, noise_scale)
                profile_data[key] = value + noise

        return profile_data

    def consent_management(self, user_id, data_types):
        """Manage user consent for different data types."""
        consent_record = {
            "user_id": user_id,
            "timestamp": datetime.now(),
            "cognitive_modeling": False,
            "learning_analytics": False,
            "personalization": False,
            "research_participation": False
        }

        # Update based on user preferences
        for data_type in data_types:
            if data_type in consent_record:
                consent_record[data_type] = True

        return consent_record

# Implement privacy protection
privacy_manager = CognitivePrivacyManager()
anonymized_profile = privacy_manager.anonymize_profile(profile)

The cognitive modeling system in Q-Memetic AI provides sophisticated user personalization while maintaining privacy and ethical standards, enabling truly adaptive and personalized memetic computing experiences.